13“285) HAL/s PROGRIHHBR'S
(Internetrics, Inc.) 1

GUIDE ¥74~2573¢
48 p HC $10.50
CSCL 09p

! .
) ! (NAsa-cp-

Unclas
63/08 39782

- T TN
. 2 g o B LA,
RO A

INTERMETRICS —

A BRI 5 Mn TgE

lam

—~—~'F-

- pwmy NS N wmy NN

HAL/S
PROGRAMMER'S

GUIDE
IR-63-2

9 April 1974

Prepared by:

P.M. Newbold
R.L. Hotz

Typescript:
V.L. Cripps

Approved:

74&/\7 A.ICI//V

Daniel J. Lickly
HAL Language/Compil =% Dept.
Head

Approved:

A i\ Nk

Dr. F. H. Martin
Shuttle Program Manager

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE +« CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

ey

st

$
¢

'

4

I
o e e

FY
.
.

FOREWORD

This document was prepared for the Johnson Space
Center, Houston, Texas, under contract NAS 9-13864.

o
’

. INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBPIDGE, MASSACHUSETTS 02138 » (617) 661-1840

-

INTRODUCTION
b

HAL/S is a programming language developed by Intermetrics, Inc.
for the flight software of the NASA tpace Shuttle program.
HAL/S is intended to satisfy virtually all of the flight
software requirements of the Space Shuttle. To achieve this,
HAL/S incorporates a wide range of features, including appli-
cations-oriented data types and organizations, real time
control mechanisms, and constructs for systems programming
tasks.

As the name indicates, HAL/S is a dialect of the original
HAL language previously developed by Intermetrics [l?.

Changes have been incorporated to simplify syntax, curb -
excessive generality, or facilitate flight code emission.

REVIEW OF THE LANGUAGE

HAL/S is a higher order language designed to allow programmers,
analysts, and engineers to communicate with the computer in a
form approximating natural mathematical expression. Parts of
the English language are combined with standard notation to
provide a tool that readily encourages programming without
demanding computer hardware expertise.

HAL/S compilers accept two formats of the source text, the
usual single line format, and also a multi-line format corres-
ponding to the natural notation of ordinary algebra.

HAL/S provides facilities for manipulating a number of different oo
data types. 1Its integer, scalar, vector, and matrix types, o
together with the appropriate operators and built-in functions i
provide an extremely powerful tool for the implementation of :
guidance and control algorithms. Bit and character types are '
also incorporated. &

i

*

A HAL/S permits the formation of multi-dimensional arrays of

homogeneous data types, and of tree-like structures which
are organizations of non-homogeneous data types.

-

l DATA TYPES AND COMPUTATIONS

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 ¢« (617) 661-1840 5 |

REAL TIME CONTROL

HAL/S is a real time control language. Defined blocks of ‘g
code called programs and tasks can be scheduled for execu-

tion in a variety of different ways. A wide range of commands

for controlling their execution is also provided including

mechanisms for interfacing with external interrupts and other

environmental conditions.

ERROR RECOVERY

HAL/S contains an elaborate run time error recovery facility
which allows the programmer freedom (within the constraints
of safety) to define his own error processing procedures, or
to leave control with the operating system.

SYSTEM LANGUAGE

HAL/S contains a number of features especially designed to
facilitate its application to systems programming. Thus,
it substantially eliminates the necessity of using an
assembler language.

PROGRAM RELIABILITY ,

Program reliability is enhanced when software can, by its -
design, create effective isolation between various sections é
of code, while maintaining ease of access to commonly used

data. HAL/S is a block oriented language in that blocks

of code may be established with locally defined variables that §
are not visible from outside the block. Separately compiled ;
program blocks can be executed together and communicate through
one or more centrally managed and highly visible data pools.

In a real time environment, HAL/S couples these precautions with
locking mechanisms preventing the uncontrolled usage of sensitive
data or areas of code.

|
j
i
¥

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840'

ABOUT THE PROGRAMMER'S GUIDE

The Programmer's Guide presents. an informal description

of the HAL/S T.anguige to the potential HAL/S programmer.

It is in no way meant to be an exhaustive catalog of all

the various rules of the language. That is the function

of the HAL/S Language Specification Document. However,

after the HAL/S programmer has absorbed the material
presented herz, he should have been able to gain enough
insight into the workings of the language to enable him

to use the Language Specification to clarify any ambiguities.

In order to execute a HAL/S program on any given machine, the
programmer will need information contained in the HAL/S User's
Manual appropriate for that machine,

The Programmer's Guide is divided into three parts:

® PART I is aimed at the new HAL/S user and contains
enough information on the compiler language constructs
to enable him to begin programming.

e PART II describes other, more complex, HAL/S constructs
which will be used regularly in applications programming.

e PART III presents programming examples designed to
illustrate and clarify important complex HAL/S Language
constructs. Some of the examples are constructs too
advanced to be described in PARTS I and II, but which
are formally defined in ‘he HAL/S Language Specification.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

8 ”an ‘7‘ .

‘ﬁ

CONTENTS OF PART 1

Page

1. STRUCTURE OF HAL/S 1-1

1.1 STrucTURING AND HIGHER ORDER LANGUAGES 1-1

1.2 THe Brock StrucTure ofF HAL/S 1-2

| 1.3 STATEMENT GrRouping IN HAL/S 1-8
1.4 SuMMARY 1-11

2, HAL/S SYMBOLOGY 2-1

a 2,1 THe CHARACTER SET 2-1

. 2.2 ReserveD WorDs, IDENTIFIERS, AND LITERALS 2-2

' 2.3 FORMAT OF SOURCE TEXT 2-8
2,4 STATEMENT DELIMITING 2-10

2,5 CoMMeENTS IN HAL/S 2-10
2,6 SuMMARY 2-11

5. A HAL/S COMPILATION - THE PROGRAM BLOCK . 3-1
.1 CPeNINGg AND CLOSING THE BLock 3-1
3.2 PositioN oF DATA DECLARATIONS 3-2
3.3 Frow oF ExecuTioN IN THE PROGRAM 3-3
3.4 SuMMARY 3-4

4.1 HAL/S Data Types 4-1
4,2 SimpLE DECLARATION STATEMENTS : 4-2
4,3 INITIALIZATION OF DATA 4-10
4.4 SumMmARY 4-13

!
|
1
i
I
B o oama oecuararion -1
|
|
l

‘ INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

__,,4-‘-7""'* ;"’"

8.

INTERMETRICS INCORPORATED « 70y CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 ¢+ (617) 661-1840

REPLACE STATEMENTS

5.1 THE REPLACE STATEMENT
5.2 UsiNe REPLACE STATEMENTS
5.3 SumMARY '

DATA REFERENCING AND SUBSCRIPTING

6.1 SuBscriprTs OF UNARRAYED DATA TYPES
6.2 SuBscr1PTs oF ARRAYED DATA TYPES
6.3 SuMMARY

EXPRESSIONS

7.1 AR1THMCTIC OPERATIONS

7.2 CHARACTER OPERATIONS

7.3 BooLeAN OPERATIONS

7.4 CoMBINING OPERATIONS & PRECEDENCE
7.5 SoMe ExpLiciT CONVERSIONS

7.6 SuMMARY

ASSIGNMENTS

8.1 ARITHMETIC ASSIGNMENTS
8.2 CHARACTER ASSIGNMENTS
8.3 BOOLEAN ASSIGNMENTS
8.4 SuMMARY

5-1
5-1
5-2
5-5

6-1
6-1
6-8
6-12

7-1
7-1
7-18
7-20

7-23

7-26
7-32

8-1
8-1
8-1
8-1
8-1

Vo st

(
I
i
]
I

i

R .

AR Sun MR PR RS PR e

10|

11.

120

CONDITIONAL STATEMENTS AND BRANCHES
9.1 THE COoNDITIONAL STATEMENT

9.2 RELATIONAL EXPRESSIONS

9.3 LABELS AND BRANCHES

9.4 SumMARY

STATEMENT GROUPS

10.1 DELIMITING STATEMENT GROUPS

10.2 RePeTITIVE EXECUTION OF STATEMENT GROUPS
10.3 SeLecTive EXECUTION OF STATEMENT GROUPS
10.4 BRANCHING IN STATEMENT GROUPS

10.5 Summary’

FUNCTIONS AND PROCEDURES
11.1 Brock DeriniTIONS
11.2 PARAMETER LISTS
11.3 ProceDURE CALLING
11.4 FuncTiOoN INvOCATION
11,5 BuiLT-1n FuncTions
11.6 SumMMARY

INPUT/OUTPUT STATEMENTS

12,1 THe READ STATEMENT

12.2 THE WRITE STATEMENT

12.3 SimpLE [/0 FORMAT CONTROL
12.4 SuMMARY

11-1
1i-1
11-1
11-1
11-1
11-1
11-1

12-1
12-1
12-1
12-1
12-1

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

‘,ﬁ

?
s

#
[
;
i

2

)

E3

13, SUMMARY OF PART I 13-1 s

-y

(
i
i
1

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSCTTS3 02138 « (617) 661-1841

™ J

PART 1

Part I of the Preogrammer's Guide is oriented toward new users
of HAL/S. It covers all the simpler constructs of the language
and contains sufficient information for suprisingly complex
programs to be written. Sections of text delimited by hori-
zontal bars are comments referring to the existence of more
complex HAL/S constructs to be explained in Part II.

INTERMETRICS INCORPORATED « /01 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

e

‘ﬁ

&

-

. S

1. STRUCTURE OF HAL/S

This section gives an overv.ew on an abstract level of the
i overall properties of HAL/S compilations, and tries to relate
these properties to the need for good programming practice.
Later scctions of the Guide interpret these properties in terms
of actual HAL/S Language constructs.

—

. 1.1 STRUCTURING AND HIGHER ORDER LANGUAGES

-

A common method of problem solving is the so-called "top down"
approach. The algorithm for solving the problem is first out-
lined broadly, and then, step by step, delineated in successively
deeper levels of greater detail. The success of the algorithm

in arriving at the solution lies as much in its ability to break
down the problem into its simplest component parts, as in its
ability to resolve the problem as a whole.

g

I1f a problem is to be solved by programming it in a higher order
language, then the "top down" approach is of especial interest
because it lends insight into how the program can be organized.
"Spevifically, the organization takes the form of an outer program
block enclosing numerous nested "subroutines"*. On the outermost
level, the program is only concerned with the broad outlines of
the solution, and relegates the first level of detail to the outer
set of subroutines. These “n turn relegate the next level of
detail to an inner set of subroutines, and so one until each
level of the problem has been relegated to the appropriate set

of subroutines.

* Here the term “subroutine” is loosely used in its generas'ly
recognized sense, conveying the idea of a subordinate klock
of code cr .ecutable as a unit on demand. HAL/S uses different
termin-.ogy, to be introduced later.

1-1
' INTERMETRICS INCORPORATEL: » 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 * (617) €61-1840

T

.
R
=

This particular programminz technique is partly what is meant

by "structured procramming". This term also implies an ability to
form nested groups of executable statements inside a program

or subroutine. On each level of nesting, a statement group

has the ability to behave as if it were a single executable
statement.

The overall effect of structured programming techniques is to
introduce an orderliness into the writing of procrams that

not only makes them easier to read but also far less prone to
error. Most modern higher order languages possess constructs
out of which structured programs can be created: +he constructs
of the HAL/S language have been defined deliberately wi.th
structured programming in mind.

1.2 THE BLOCK STRUCTURE OF HAL/S

The structure of a HAL/S compilation, as indicated below,
generally consists of a program block with procedure and
function blocks nested within it.

program
o
blocks at _———‘_Jjﬁg”

level 3 =1 | \ .
blocks at level 1 S
L~]) / ;
blocks lt// ' / t

level 2 = | — . 4}// .
T '
I R !

Y

" |
3
1-2 -

E:

!
i
!
!
!
|
l
|
I
y
l
1
|
!
i
|
l
|
i

unction and procedure blocks comprise the "subroutines" of
ection 1.1. The more deeply nested a block, the deeper the
evel of detail of the prob’em solution it is supposed to
andle. The differercc between function and procedure blocks
ies in the manner in whith they are invoked, and is clarified
ater in the Guide.

H T
H

The HAL/S compilation, then, consis.s of blocks containing
executable statements, some of which perform operations
on defined data.

SCOPING OF DATA

In HAL/S, all data must ke defined in so-called "data declara-
tions". An important consequence of the structural properties

of HAL/S is its ability to place data declarations so as to bound
the regions in a program which may reference the declared data.
This feature is called "scoping".

Data declared at the program level may generally be used through-
out the entire compilation:

o _

_
/

.
7
?

- e
//7 // Z i here program
/%/// /?/?// //% region w

.

e

_ .

_

NN

.

NN

data declarations are
known; i.e. the “scope”
of program data
declarations.

/////////////// -

.
. U

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1+10

T T e e o e i T

* Tl
i

TRt

% 3

In addition, any procedure or function block nested within a
program block may declare local data - data known only in that
particular block and in blocks nested within it - as indicated
below:

=
N\

Z

known

)

Ny

e
Y
R

e
NN

8

N

\
.

known

SCOPING OF BLOCK NAMES

The program block, and every procedure or function within it
are named: block names have scoping rules identical with the
scoping rules for data alresdy described. The name of any
procedure or function block is deemed to have been "declared”
in the outer block in which that procedure or function is nested.
This bounds the region where the name is known, and therefore
from where the procedure or function may be invoked. Thus, the
name of any procedure or function nested at the program level
is known anywhere.in the program. However, since in HAL/S
recursion is not allowed, such a procedure or function may be
isvorad from anywhere except from inside itself, as indicated:

1-4

ra

//' region where
data declared
local to X are

% region where
data declared
_,local to Y are

,NTERMETRICS INCGRPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184le

Eo e

\\\

W
£
N

s
i3
N

77

g I

—
§\\\\ \\\
\\\\\\\\\\ \\

\\\\\\

\s\\\\\\\s&

\\
\ \
\

| \\\\\\\ \\\\\\\ \

&\\

T e

Az

S

o

e Y .
AR 0 o 1 +* e 1 - .y AT

Similarly, inner procedures and functions may be invoked from
anywhere in the block enclosing them except within themselves.

In the following example, inner block B and C can only be
invoked from inside regions X and Y respectively:

1/,*/ 27, /

e

o

>\\\\

X

: K
%

Y

C e

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE + CAM3RIDGE, MASSACHUSETTS 021138 - /617) 661-1840' k

1-6

%

717 region where
%// block B may be
% invoked

region where
block C may be
invoked

L

»

i

.
;
i
i
I >&
4
5

[

N
|
L

: f

- ————h

It should be noted that all forms of recursion in HAL/S
are illegal. The form of recursion not prevented by
the rules given above is that in which procedures P and
Q are not contained in each other, but P calls Q and Q
calls P.

It is also possible for a program
(or any block within it) to in-
voke entities outside the compila-
4ion unit; i.e. other compilation
units. Procedures and functions
) may be compiled independently for
; this purpose.
See: (tbd)

1-7

INTFRMETRICS INCORPORATED « 701 CONCQRD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

1.3 STATEMENT GROUPING IN HAL/S

In HAL/S, the actual step by step solution of a problem is
performed by executable statements contained in the blocks
comprising the program. Sequences of executable statements
may be groured together and treated as a single compound
statement. Such statement groups are said to be "well-
bracketed” - they begin with a special statement (a "DO"
statement), and end with another special statement (an "END"
statement). Execution of the sequence of statements in the
group can be controlled in various ways depending on the form
of the opening "DO" statement:

e the senquence may be executed once only;

e the sequence may be executed repetitively until specified
conditions are met;

e one statement in the sequence may be selected as the
only one to be executed.

Sequences of compound statements may also be grouped together
in the same way and, in turn, be treated as a more complex com-
pound statement, and so on to an arbitrary degree of nesting.

Use of this grouping property in conjunction with other HAL/S
constructs can substantially eliminate the need for a "GO TO"
statement (in the Fortran sense, for example), which from the
structured programming viewpoint is recognized to be "dangerous"
because it destroys the readability of a program, and makes it
more error-prone.

|

STATEMENT GROUPS AND GO TO STATEMENTS

The design of HAL/S minimizes the dangers of "GO TO® statements

by limiting the regions which can be branched to by them, in a way
analogous to the limits imposed on data by the scoping rules
described in Section 1.2,

1-8
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

-k A

Consider a program containing nested groups
statements as shown below:

of ex=cutable

&

program

ouzermost

.-

group X

innermost

L—"" group Y

The region of legal destinations of "GO TO"

in group X are as indicated below:

P

»

PR s pmeg AR N R B A

1-9
‘ INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 2138 -+ (617) 661-1840

statements contained

—— program

outermost
group X

region of
legal des-
inations
of GO TO's
in X

By T . v

The region of legal destinations of "GO TO" statements contained
in group Y are as indicated below:

e i

.

program 5

iregion of

ilegal des-
tinations

of GO TO's
in Y

innermost
group ¥

<N " e
~la | v .

A
R Lo e

[P A
A k- A

It is evident from the examples that while groups can be branched
out of, or branched within, they may not be branched into.

INTERACTION WITH BLOCK STRUCTURE i

Since procedure and function blocks may appear anywhere in a program, (¢
including inside statement groups, the problem arises of branches

by means of "GO TO" statements in and out of such blocks. ,z

In HAL/S, the destinations of "GO TO" statements are labels attached

to executable statements. Because the scope rules for statement

labels are the same as for decared data, it follows that it is '{
impossible to branch into a procedure or function block. Additionalljy!l
a rule is made that branches may not be made out of a block (even

though by scope rules the label of the destination is visible). 'z ?
This leaves the reciprocal processes of call and return-to-caller ' ; .
the only ways of entering and leaving procedures and functions, . : .
which is in accordance with structured programming principles. “

~ oy

}

1-10
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184C3

-

.-

[S

.

1.4 SUMMARY

This section has been concerned with the structural properties

of HAL/S ccmpilations on an abstract level. It remains to be
demonstrated in the ensuing sections of PART I how the properties
are translated into sequences of actual HAL/S constructs. Section
2 begins this on the most basic level by describing the
characteristics of HAL/S source text.

Ty

L B B B B R —

1-11

' INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

-

A

- ——

L B B B B B R I

2, HAL/S SYMBOLOGY

HAL/S source text has its own particular characteristics;

a specific character set, special combinations of characters
set aside as reserved words, and certain rules dictating

the form of statements. This section is an introduction

to these characteristics of the HAL/S Language.

2,1 THE CHARACTER SET

The HAL/S language uses the following character set:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz

0123456789
+=%, /| ~&=<>#@$,;:'") (8¢
(blank)

This character set is a subset of the standard character sets
ASCII and EBCDIC.

Although the user really needs only the above character set
when writing a HAL/S program, there are additional special
characters which can be used in comments and in character

string literals (described later in this section).

(y{}:2

The output listings produced by a HAL/S compiler may use these
extra special characters for annotation.

2-1

MITEPMETRING INCORPORATFD « 701 CONCOHJ AVENUE - CAMBRIDCE, MASSACHUSETTS 02138 « (617) 661-1840

R)
Rl

PR Al

:-‘ P o B

- “‘““;f'\

2,2 RESERVED WORDS, IDENTIFIERS, AND LITERALS m

The HAL/S language uses four kinds of primitive elements as
basic constructs:

® RESERVED WORDS are a fixed part of the language and consist
'of corbinations of upper case alphabetic characters;

® IDENTIFIERS are user-defined names used for data or labels,
and consist of combinations of the alphanumeric characters;

® LITERALS express actual values, and can consist of any of the
symbols in the character set;

® SPECIAL CHARACTERS serve as delimiters, separators or
operators, and consist of the non-alphanumeric
characters of the HAL/S set.

RESERVED WORDS

Reserved words are words having a standard meaning in the HAL/S
language. As their name suggests, the user cannot use reserved
words as identifier names. There are two major categories of
reserved words: .

¢ KEYWORDS are used to express parts of HAL/S statements, Ior
example: GO TO, DECLARE, CALL, and so on. A complete
list can be found in Appendix .

® BUILT-IN FUNCTION NAMES are used to identify a library of
common mathematical and other routines, for example:

SINE, SQRT, TRANSPOSE, and so on. A complete list can
be found in Appendix .

!
[
!
|
I
!
|
!

2-2
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 ¢ (617) 661-1840'

Ay

—— R B OB e

—y

L B o BN

P pemey

5

IDENTIFIERS "

An identifier name is a user-assigned nawne identifying an
item of data, a statement or block label, or other entity.
The 'fcllowing rules must be observed ir the creation of

any identifier name%*.

1. The total number of characters in the name
must not exceed 32;

2. The first character must be alphabetic;

3. The remaining characters may be either
alphabetic or numeric;

4. Any character except the first or last
may be an underscore (_).

Examples:

ELEPHANT AND_CASTLE
Al } legal
) 4

1B .
X_X_ } illegal

* Some implementations of HAL/S may place extra restrictions
upon the names of identifiers.

2-3
INTERMETR!CS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

LITERALS

The three basic kinds of literals described here are arithmetic,
character string, and Boolean. The utility of arithmetic

In simple programming problems, character
string literals find most use in the generation of output.
Boolean literals are used to state logical truth or falsehood.

‘ literals is obvious.

® ARITHMETIC LITERALS express numerical values in decimal

notation. The generic form of an arithmetic literal
is:
mantissa r-exponent
Pt~
tddd.dddE:ddd
l. ddd rebresents an arbitrary
number of decimal digits.
2. fhe exponent is optional.
3. The + signs are optional.
4. The decimal point is optional.
If# absent, it is considered to be
to the right of the least signi-
) ficant digit of the mantiss=z.
' If the decimal point is present,
it may appear anywhere in the mantissa.
5. The minimum number of digits in the

mantissa, and in the aoxponent, if
present, is one. The maximum
number is implementation dependent.
(See Appendix).

2-4

TATAMNR s I AALEINCE MASSACHUSETTS 02138 + (617) 661-1840

|

.

[]

]
]
{
|
1
!
I

Example.:

0.123E1l6
45.9
-4

It is important to note that HAL/S makes no distinction

of type between a integral-valued literal and a fractional-
valued literal. Either integer (w.th possible rounding of
value) or scalar (i.e. floating-point) type is assumed
according to the context in which the literazl is used.

The use of multiple expone.ts,

} and of binary, hexadecimal o:x
octal exponents, in also allowed.
See: (tbd).
2=-5
‘ INTERMETPICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSET 'S 02138 ¢ (617) 661-1840 "
I LI B BEER

® CHARACTER STRING LITERALS consist of strings of characters "
chosen from the entire HAL/S character set. The b
generic form is:

‘cccececece!

1. The quote marks delimit the
beginning and end of the
litecal.

2. cccc represerts an arbitrary
number of characters in any
combination.

3. Quote marks within the literal
must be represented by a pair
of quote marks to avoid con-
fusion with the delimiting
quotes.

4. The minimum number of characters
is zero (a 'null' string), the
maximum is 255%,

* This value is implementation dependent. See Appendix
for exceptions.

2-6
INTFRMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840;

L2

;g

Examples:

'ONE two THREE'
lDoGl lsl

If a literal consists of a single
character, or character sequence
repeated may times, a condensed
form of literal using a repeti-
tion factor may be used.

See: (tbd).

® BOOLEAN LITERALS express logical truth or falsehood,
and are generally used to set up the values of
Booiean data items (see later). Their forms are:

TRUE } expressing truth, or
ON binary "1"

FALSE } expressing falsehood
OFF or binary "0"

Literal strings of binary values
also exist.
See (tbd).

2=7

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2,3 FORMAT OF SOURCE TEXT E

HAL/S is a "stream-oriented" language, that is, statements
may begin anywhere on a line (or card), and may overflow
without special indication onto succeeding lines or cards.
Several statements may be written on one line (or card) as
required.

HAL/S is among the very few languages which permits subscripts
and exponents to be represented as they are mathematically,

using lines below and above the main line respectively as needed.
This multi-line format is an optional alternative to the HAL/S
single-line format.

Even when multi-line format is not used, the first character
position of each lin< (or card) is reserved for a symbol
denoting the kind of line format, subscript, main, or
exponent.

SINGLE-LINE FORMAT -

In single-line format, the firs: character position of each line %
is left blank, 8enoting a main line. (An M can alternatively
be used but is generally not preferred by users.

o EXPONENTS are denoted by the operator #*x

Example:

t+2 is coded as: -

.
. - e

M Xxx (T+2)

e SUBSCRIPTS are denoted by parenthesizing the subscript and
preceding it with the symbol §.

Example:

M A$(I+1)

- es o

2-8
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 ¢+ (617) 661-1840

1
} |
a1 is coded as:]
i
i

|

!
i
|
i
i
!
!
i
i
|
|
|
!
1
l
|
i
!
1

MULTI-LINE FORMAT

In multi-line format, the first character of a mairn line

is either left blank or M is inserted as before. The first
character of an exponent line is E, and that of a subscript
line is S.

® EXPONENTS are written on an exponent line (E-line) immediately
above the main line.

Example:
xt+2 is coded es:
.E T+2

‘M X

@ SUBSCRIPTS are written on a subscript line (S-line) immediately
below the main line.

Example:

ai+l is coded as:
‘M A
.S I+l

When using multi-line format, care must be taken to ensure that
nothing on the E- and S-lines overlaps anything on the M-line.

Exponents of exponents and sub-
scripts of subscripts use extra
subscript and exponent lines.
Special rules apply if exponents
are subscripted, or if subscripts
possess exponents.

See: (thd).

2-9

INTERMETRICS INCORPORATED + 701 CONCQORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02133 » (817) 661-1840

R P

P Y

e a

=

2.4 STATEMENT DELIMITING

As Section 2.3 indicated, HAL/S statements may be written in
free form without regard for line (cr card) boundaries. Be-~
cause of this there is the need to explicitly indicate the

end of each statement with a special symbol. HAL/S uses a
semicolon for this purpose. The following statements arbitrarily

selected from the language show the placement of the semicolon.

Examples:

DECLARE I INTEGER;
I=1+1;

2.5 COMMENTS IN HAL/S

I

The use of comments is a sine qua non of good programming practice.
HAL/S possesses two mechanisms for the inclusion of comments in a

compilation.

e IMBEDDED COMMENTS may be placed anywhere on main, exponent
or subscript lines of HAL/S text.

e COMMENT LINES may appear between main, exponent and subscript
lines of HAL/S text.

- IMBEDDED COMMENTS

An imbedded comment takes the form:

/* ... any text (except */) ... */

2-10
OARPABATEN « 701 CONCORD AVENUF -« CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

’.

l
I
i
|
!
!
|
!
I
i
i
!
|
1
|
|

fa o S S IV S T R

y

b 9 7, r

Such comments may appear between HAL/S statements or imbedded

in a statement. They may not appear in the middle of a literal,
reserved word, or identifier., As far as the sense of the source
text is concerned, an imbedded comment is treated as if it were
a string of blank characters.

Example:
i
:M X =X+ 1; /x ADD ONE TO X */

U
COMMENT LINES

Comment lines are input lines specially reserved solely for comments
by placing the character C in the first character position of the
line. The rest of the line may contain any desired text.

Examples:

M X =X+ 1;
'C ADD ONE TO X
'C THEN CARRY ON

2.6 SUMMARY

In Section 2, the most basic elements of the HAL/S Language have
been outlined: reserved words, identifiers, literals, the
formatting of the source text, and alternate forms of comment
insertion.

In Section 3, the overall form of a HAL/S program will be explained,

with special references to how declarations of data and executable
statements may be arranged within it.

2-11

LISMIRAT AASS S ALEIGETTR 191498 « (R17) 661-1840

‘&

i

b i

1 Al
A

i '
3 ""

-

-

I a5 O O G0 OE O me aE Ze ol N a8 on - @&Ga s

3, A HAL/S COMPILATION - THE PROGRAM BLOCK

The structuring of HAL/S programs was dealt with on the conceptual
level in Section 1. Section 3 begins to interpret this infor-
mation in terms of actual HAL/S language constructs.

For the purposes of Part I,an 2ntire HAL/S unit of compilation
is known as the "program block". The term "block" has a special
connotation in this Guide. It is taken to mean a coherent

body of data declarations and executable statements enclosed in
statements delimiting its opening and closing, and identified
with a name.

3,1 OPENING AND CLOSING THE PROGRAM BLOCK

The first statement of a HAL/S program is that statement defining
the name of the program and opening the program block. The last
statement of a HAL/S ‘program is that statement closing the program
block. Between the two are all the statements comprising the body

of the program.,

PROGRAM OPENING -

The statement that opens the program block takes the form:

<label>: PROGRAM;

1. <label> is any legal identifier
name, and constitutes the name
of the program.

3-1

ETEAL TN AANIACON AUEIE o A COIRRINGE JASRACHUSETTS 02338 « (617) 661-1840

PROGRAM CLOSING

The program block is closed with the statement:

CLOSE <label>;

1. The identifier <label> is
optional.

2. If <label> is supplied, it
must be the program name,
i.e. the <label> on the
opening statement of the
program block.

Example:

TEST: PROGRAM;

o

CLOSE TEST;

f__.body of program yoes in here

7

3.2 POSITION OF DATA DECLARATIONS

Normal HAL/S programs require the use of data. The names used
to identify this data must be declared before use by tlLs means
of data declaration statements. Data declarations (and,
additionally, certain other kinds of statements) must Le

placed after the program opening statement and before the
first executable statement.

3-2
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

-

i

PRSP RORICE . R .

|
l
l
I
I
|
!
!
1
|
i
1
i
i

‘,ﬁ

"

-~

|
!
I
!
!
|
l
R
1
"1
1
I
i
|
¥
|
[
[
]

data declaration statements

executable statements

D

CLOSE TEST;

3.3 FLOW OF EXECUTION IN THE PROGRAM

The program begins to execute with the first executable state-
ment after the data declarations, and thereafter follows a

path determined by the kinds of executable statements encountered.
Unless statement groups, or branching or conditional statements
intervene, execution is sequential®, Finally, the path either
reaches a statement terminating execution of the program, or
reaches the closing statement of the program block, which has

the same effect. .

As described in Section 1, procedure and function definition
blocks may be interspersed between the statements in a procgram
block. The only way of executing such blocks is by explicit
invocation: if they are encountered in the path of execution
they are passed over as if non-existent.

¥ This order is called the "natural order" of execution.

3-3

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

W' R

L
e e ——

Example:
1
: TEST: PROGRAM;
]
! ‘data
: declaration
\ statements
!
!
1
‘)
|
: |
!
: |
') executable
| statements
) o 3
| /o
. e (
I e
: : proqequge
. @ definition
, ® block

path of | ‘
execution :

[
'
)
i
'
' o’
Wa
' block invoked
' and returned

‘ from .

3.4 SUMMARY

Section 3 has described the opening and closing of a program
block, has shown where data declarations are placed in it, and
has explained the path of execution followed through a program
block. The following chapters of Part I will begin to fill

in the details of the possible contents of the block. Section 4
describes ihicv data is declared and referenced. It begins to
build on the fundamental information given in Section 2.

3-4

s ETTI AN L (MY

'1-1840

S g

:-w-"wi

1
||

ba BN, .

T LN

»

S
-

A

4, DATA DECLARATION

Programming largely consists of the manipulation of numerical

data. The diversity of the data types in a language determines

its utility for any regquired task. HAL/S contains an exceptionally
diverse set of data types.

Identifiers of the kind described in Section 2 are used to name
items of data. Identifier names used to represent data items
must* be defined in data declarations appearing in the appropriate
program, prodcedure or function block. The effect of placing
data in different blocks is described in Section 1. The position
of data declarations within a program block is described in
Section 3.

This Section now proceeds to describe the detailed construction
of data declarations.

4.1 HAL/S DATA TYPES

In the HAL/S language, arithmetic data of the following types
can be declared!i

e INTEGER for the representation of integer-valued quantities;

e SCALAR for the representation of "floating-point" guantities;

e VECTOR for the representation of algebraic row or column
vectors (without distinction), and each element of which is
a SCALAR quantity:;

. ® MATRIX for the representation of algebraic matrices, and each
element of which is a SCALAR gquantity.

* The HAL/S language prohibits the use of implicitly declared
data items considering it to be an undesirable programming
practice.
4-1
) TOTNAnITTR 3N £AY TARN CVEMEIE « CAMPRINGF MASSACHUSETTS 02138 « (617) €61-1840

"0”-';

ot - il .

These arithmetic data types may be specified in either single
or double precision. In the case of INTEGER, the precision
determines the maximrm absolute value the identifier may take
on. In all other cases, it determines the number of signifi-
cant digits in the mantissa of the value.

In aadition, HAL/S also possesses the fcllowing data vypes:
® CHARACTER for the representation of strings of text;

e BOOLEAN for the representation of binary-valued (logical)
guantities.

It is possible to declare arrays (or tables) of any of the six
above types.

HAL/S in fact allows more
data types than just those
described here. It also
allows hierarchical organ-
izations of data-types
called "structures”.

Sea: (tbd)

4,2 SIMPLE DECLARATION STATEMENTS

Data dec.aration statements define identifiers used to name data.
The simplest forms of declaration statement for each data type
listed above are examined on the following pages.

4-2
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRICGE, MASSACHUSETTS 02138 - (617) 661-1840

Ry > + ——ay

+ v—

1'
{
I
]
I
i
I
|
!

»

Rl bt B N st

A 5

INTEGER
§

DECLARE <name> INTEGER;
DECLARE <name> (NTEGER SINGLE;
DECLARE <name> INTEGER DOUBLE;

1. In each of the forms «<name> is any legal
HAL/S identifier.

2. Presence of the keyword SINGLE specifics
single precision.

3. Presence of the keyword DOUBLE specifies
double precision.

4, Absence of either keyword implies default
of single precision.

For the integer data type, single precision usually implies
halfword and double precision fullword, dupending on the
implementation?*,

Examples:

I
y DECLARE Il INTEGER;
| DECLARE BIG_I INTEGER DOUBLE;

* See Appendix . e

4-3
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 651-1840

SCALAR

- - - - -

DECLARE <name> SCAILAR;
DECLARE <name> SCALAR SINGLE;
DECLARE <name> SCALAR DOUBLE;

In each of the forms, <name> is any
legal iéentifier,

Presence of the keyword SINGLE specifies
single precision.

Presence of the keyword DOUBLE specifies
double precision.

Abscnce of either keyword implies a de-
fault of single precision.

The keyword SCALAR may be omitted.

Double precision usually implies increased range of exponent
and increased number of digits in the mantissa, but it is

implementation dependent*.

Examples:

DECLARE S1;
DECLARE S2 SCALAR;
DECLARE S3 SCALAR DOUBLE;

* See Appendix .

TOANTTOINS 1CATONRATEN « 701 CONCORND AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4-4

R 4

-~ et g

Ve

|

|
i
]
i
i

e

T xd s LS xR

-

¥

G O S0 S0 D M s emd EEm omy e G e cmw G A SR MBS

L

LR

¥ 4

cormr——

MATRIX

: DECLARE <name> MATRIX (m,n);
. DECLARE <name> MATRIX(m,n) SINGLE:
- DECLARE <name> MATRIX(m,n) DOUBLE;

~a 3x3 matrix is assumed.

In each form <name> is any legal identifiecr.

Keywords SINGLE and DOUBLE have the same
significance as for SCALAR and VECTOR types.

m and n denote respectively the number of
rows and columns in the matrix. They must
lie in the range 1 < m, n & 16*,

If the size specification (m,n) is absent,

Examples:

- awmwm® e

DECLARE M1 MATRIX(2,4);
DECLARE M2 MATRIX (4,5) DOUBLE;
DECLARE M3 MATRIX;

‘\\a 3x3 matrix

* This value may be implementation dependent. See Appendix
for exceptions.

INTFRME FRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 +

4-5

] ———

[

(617) 661-1840

e an PN

VECTOR
—— o j
+ DECLARE <name> VECTOR (n);
| DECLARE <name> VECTOR(n) SINGLE;
1 DECLARE <name> VECTOR(n) DOUBLE;
1. In each form <name> is any legal .
identifier. ‘
2. Keywords SINGLE and DOUBLE have the .
same significance as for SCALAR type. ;
3. n specifies the length of the vector
and must lie in the range 1 < n £ 16%*,
4. If the length specification (n) is
omitted a length of 3 is assumed. v
E
Examples: ;

DECLARE V1 VECTOR(10);
DECLARE V2 VECTOR(3) DOUBLE;
DECLARE V3 VECTOR;

\

a 3-vector

* This value may be implementation dependent. See Appendix
for exceptions.

4-6
T TTR 704 AANANABAH AUENMLIE < CAMRAINGE MASSACHUSETTS 02138 - (617) 661-1840

{
]
]
1
1
!
i
|

‘ﬁ

e

CHARACTER

DECLARE <name> CHARACTER(n);

1. <name> is any legal identifier.

2. n specifies the maximum length of the text
string that the data type may carry. (i.e.
the maximum number of characters). It must
lie in the range of 1 & n £ 255%,

3. The actual length of the string of text
carried may vary during execution between
zero (a "null" string) and the maximum n.

Example:

» DECLARE C1 CHARACTER(80);

BOOLEAN

]

DECLARE <name> BOOLEAN;

l. <name> is any legal identifier.

- Example:
EDECLARE Bl BOOLEAN;

* This value may be implementation dependent. See Appendix

4-7

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 ¢« (€17) 661-1840

el o st~

M

ARRAYS

In any of the above declarations, regardless of data type,
the part of the declaration between the <name> and the
terminating semicolon which establishes the type (and
possibly precision and size) constitutes the "attributes"
of the declaration, ‘

To declare an array of any data type an ARRAY specification
is inserted between the <name> and the attributes:

l.

2,

 DECLARE <name> ARRAY (n) <attributes>;

<attributes> stands for any legal form of
attributes for any data type described.

n denotes the number of elements in the array
(i.e. entries in the table) and must lie in
the range 1 < n £ 32768%,

Examples:

- ' DECLARE AS1 ARRAY(500) SCALAR;

DECLARE AM1 ARRAY (20) MATRIX(4,4);

* fThis value may be machine dependent. See Appendix
for exceptions.

INTFRMFTRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4-8

o

[
3
1
1

AN

COMPOUND DECLARATIONS

If a program contains declarations of many data items it is
tedious to repeat the keyword DECLARE in every declaration.
Many separate declarations may be condensed into one compound
declaration as shown below.

Example:

' DECLARE S;

DECLARE I INTEGER DOUBLE;

DECLARE M3 MATRIX;

DECLARE M6 MATRIX (6,6); separate declarations
DECLARE B BOOLEAN;

DECLARE C ARRAY (5) CHARACTER(20);

DECLARE V ARRAY (3) VECTOR:

DECLARE S,
I INTEGER DOUBLE,
M3 MATRIX,
M6 MATRIX(6,6), equivalent compound
B ROOLEAN, declaration

C ARRAY(5) CHARACTER(20),
V ARRAY (3) VECTOR;

Note the commas separating the declaration of each data item.

. If the identifiers in a compound
declaration have some attributes
in common a third even more
compact form of declaration
called a factored declaration
can be used.

See: (tbd)

4-9

[INTERMET?R'CS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4,3 INITIALIZATION OF DATA

A ""AL/S data item of any type may be initialized by incorporating
an INLTIAL specification intc its declaration statement. The
form of such a specification differs depending on whether the
data item is "uni-valued" or "multi-valued".

e UNI-VALUED data items are those having only one element:
unarrayed scalars, booleans, and characters.

® MULTI-VALUED data items are those having more than one
element: unarrayed vectors and matrices, and arrayed
data items of any type.

In either case, the INITIAL specification is placed after the type,
precision, and size attributes of a declaration. This positioning
will become apparent in the examples to follow.

UNI-VALUED DATA ITEMS

The two variations of the form of INITIAL specification for
uni-valued data items are:

INITIAL (<value>)
CONSTANT (<value>)

1. The two forms have the same effect in
that the data item is initialized to
the literal indicated by <value>,

2. Tre form using the keyword CONSTANT is
required-only if the user wishes not
to change the initial value during .
execution*, i

3. The type of the literal <value> must
be compatible with the type of the data ?
item as determined from the following
table:

data type literal value

CHARACTER character string . :
BOOLEAN boolean q

;ggf:gR } arithmetic

* In many respects a data item initialized this way is akin to
a literal.

4-10
- T I ennanr AIRTIHE o CAMPRRIDGE MASSACHUSETTS 02138 « (617) 661-1840 -

7
[

Examples:

I

DECLARE A SCALAR INITIAL(3),

B SCALAR CONSTANT (4.5E-3),

|

' C CHARACTER(80) INITIAL('YES'),
: D BOOLEAN INITIAL (TRUE);
I

Note: initial working length of C becomes 3.

MULTI-VALUED DATA ITEMS

There are two corresponding variations of the INITIAL specification
for multi-valued data items:

INITIAL (<value>, <value>,)
CONSTANT (<value>, <value>,)

The meaning of the keyword CONSTANT is
the same as for uni-valued data items.

2. The type of the literal <value> must be
compatible with the type of the data item, |
as determined from the following table.

data type literal value
. CHARACTER character string
BOOLEAN boolean .
INTEGER }
SCALAR . .
VECTOR ‘ arithmetic
MATRIX

3. The number of <value>s in the list must
equal the total number of elements implied
by the data declaratiocn.

Note that if all the elements of a multi-valued data item are to
be initialized to the same value then the form used for uni-valued -
data items may be used.

sl e EEg A0 GBS G EER R R A G D D B EaE s e
-

4-11

' INTERMETRICS 1NCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Examples:

:DECLARE V VECTOR INITIAL(1,2,3.5)
| S ARRAY(2) CONSTANT(1,0),
| T ARRAY (2) VECTOR(2) INITIAL(4.7,-5.3,0,0);

:DECLARE V VECTOR INITIAL(O),
' S ARRAY (100) INTEGER INITIAL(256);

all elements of these data
items are identically
initialized.

ORDER OF INITIALIZATION

To complete the specification of initialization the order of
initialization of the elements of multi-valued data items
needs to be defined.

The following ordering rules, though applied here to the
initialization of multi-valued data items, holds true when-
ever the ordering of elements is called into question.

e VECTOR data items are initialized in order of increasing
index.

® MATRIX data items are initialized row by row in order of
increasing index.

® ARRAY data items are initialized array element by array elcement
in order of increasing index. Where the array element are
themselves multi-valued, each array element in turn is

initialized completely according to the previous rules before
going on to the next.

Example:
DECLARE M ARRAY(2) MATRIX(2,2) INITIAL(1,2,3,4,5,6,7,8);
if Ml is the first array element, and Mz is the second, then:

12 5 6
M = [341 '“2"[78
4-12 .-

SmARnARSTEA A1 AN AN CVUENEIE o CAMRRINGE MASSACHUSETTS 02138 - (617) 661-1840

d e e BEid S G cEae R BN GEEE GERS W AR e -

c ok e

Ry .
‘ [e—— ok e | [S L] o ™ wallay -

<
°

.-

anmt pumey m pemy Puy puegy e

Additional more compact initialization
forms are 'available if only partial
initialization is required, or if
subsets of the initial values are
identical, See. (tbd)

4.4 SUMMARY

Section 4 has dealt with how data is declared in HAL/S
compilations, and how it initialized. The next logical
step is to begin to discover how it may be used. However,
this is put off until Section 6. Section 5 deals with a
useful HAL/S construct which allows the user to replace
frequently-repeated HAL/S expressions by defining and
substituting a symbolic name.

dv of Section 5 can be omitted without detriment to the

[S A SRS

undersiunding of the remainder of Part I of the Guide.

4-13

INTFRMFTR TS I ORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

i
t

‘Ihé? e

B el

5. REPLACE STATEMENTS

When it is necessary to repeat a particular HAL/S construct
exactly many times during a program, the user can avoid the
tedious process of laboriocusly writing it at length each time
by defining a symbolic name to represent the construct, and
then replacing the construct with the symbolic name,

This kind of substitution can be of advantage in several

ways. For instance, the value of a literal recurring many times
can be easily changed between successive compilations. The user
need only define a symbolic name to represent the literal, then
replace the one with the other. Only ore line of the program
needs to be recoded as opposed to the many lines that would

need recoding if the user had to find and change the literal
each time it occurred.

The definition and substitution of the symbolic name is
accomplished by a REPLACE statement.

5.1 THE REPLACE STATEMENT

The REPLACE statement is placed together with the data
declarations of the program, procedure, or function block in
which it is to be .used. It takes the form:

i
i REPLACE <name> BY "XXXXXXXXXXX";
'

1. XXXXXXX represents the HAL/S source text which
it is desired to substitute. The text is de-
limited by double quote marks, and must be
written in single line format.

2. <name> is the symbolic name chosen to repre-
sent the text. It may be any legal identifier
name.

3. XXXXXXX may be %£§ legal source text of arbi-
trary length. edded double quote marks
must be represented as a pair of double quote
marks to avoid confusion w the delimiters.

4. The text must not begin or end in the middle
of a reserved word, identifier, literal, or
imbedded comment.

5-1
l INTERMETRICS INCORFORATED « 701 2ONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Examples:

REPLACE OUTPUT BY "WRITE(6)";
REPLACE INCREMENT BY "X=X+1;";

| #
5.2 USING REPLACE STATEMENTS

The following examples show the way in which the symbol
substitution defined by the REPLACE statement is used.

Examples:

]

: REPLACE DV BY "VECTOR DQUBLE INITIAL(O)":;
+ DECLARE VEC1 DV,

' VEC2 DV,

' VEC3 DV;

' - by expansion of DV it is evident that

VEC1l, VEC2, VEC3 are all double precision
vectors initialized to zero.

REPLACE N BY "4";

DECLARE V1 VECTOR(N),
M1 MATRIX(N,N),
M2 MATRIX(2,N);

-—- ewm .-

- this shows the utility of the REPLACE:
statement in making it easy to change the
isizes of several vectors and matrices
simultaneousiy.

REPLACE Y BY "ARRAY(5) X";

Rl @l o, <

- this is an example of nested sub-
stitutions. The expansion of Y is
ARRAY (5) VECTOR(2).

SRR R

REPLACE X BY "REPLACE Y BY""2""";
X;
DECLARE Y SCALAR;

= although this is a legal use of REPLACE statements, it
does not lend itself to clarity. The sequence of state-
ments culminates in Z being declared as a scalar data

item.

5-2
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 681-1840

REPLACE X BY "VECTOR(2)"; I ;

+ g

L)

_" - W &»‘ .-t

r
PO o — %

follows its appearance.

Example:
)
{ DECLARE V1 VECTOR(N);
! REPLACE N BY "4";
| DECLARE V2 VECTOR(N):;

.
' .

declaration statement.,

obvious. - -
Example:

- the REPLACE statement will only be
effective starting with the second
N is un-
known in the first declaration and
compilation would detect the error.

A REPLACE statement takes effect only after it appears.
It does not modify the entire block, only that section that

Care must be taken in using REPLACE statements because
th. ways in which they are affected by the block structure
of the HAL/S program in which they appear are not always

|_—~ Program

P
_— rocedure bluck

- the user must remember
that the X of the local
declaration inside the

procedure block is still

' INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 681-1840

REPLACE X BY "Y";
el
DECLARE X SCALAR; ‘ﬂ”‘
5-3

subject to the REPLACE'
statement at the progran
level.

The only case in which a REPLACE statement 1n an outer block
becomes ineffective in an inner block is when the inner block
has a REPLACE statement in it with the same nuime.

Example:

REPLACE X BY "Y"-‘\‘\“/Program '
o ra
\\\:\\\\\ﬁx\s§\,.\\\\\\\\‘:\\'>\&\\\\\\‘\\\‘\\\\\~\\\\\w TN
N Nk '\.\.\f\\‘\”.\".-‘,‘:‘\\' L RN
AR
N e P d
§ ifihadv i §§§ rocedure block
A\
.,§§ Procedure block
R
s AR %Gk .‘\\\B\\ ;
R '
DRI
RN R Q

\ ‘
X \\.\\ R \'.\

region where X is
replaced by Y

region where X is
replaced by 2

Replace statements may also
possess parameter3, timing
them with a sopnisticated
macro expansion facility.
See: (tbd).

5-4
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSET'S 02138 - (617) 661-1840

2B T Y ann W N s O seew RN e

‘,ﬁ

5.5 SUMMARY

Section 5 has dealt with a mechanism for symbolic replacement
of HAL/S source text. Section 6 beyins to examine the way in
wiich executable statements are .constructed by desccibing how
data is referenced.

-

e e I I . BT O

”_
oy b |

o - D

*

pny p—y

" INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBR'DCE, MASSACHUSET™S 02138 + (617) 661-1840

u

l INTERMETRICS INCORPQRATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACH'UJSETTS 02138 + (617) 661-1840

6. DATA REFERENCING AND SUBSCRIPTING
»

Any appearance of the name of a previously-declared datu item
in an executable statement constitutes a reference tec its value
(and possibly causes a change in its value)*. Sometcimes it is
necessary to be able to reference elements of vectors, matrices,
and arrays, and also to reference parts of character strings.
HAL/S has a wide range of subscript forms designed for this
purpose.

Two kinds of subscripting are relevant to the data types
described in Section 4.

® COMPONENT SUBSCRIPTING allows the user to select elements
or subsets of elements from vectors and matrices, and to
select substrings from character data items.

° ARRAY SUBSCRIPTING allows the user to select elements or
subsets of elements from arrays of any data type.

Depending on the nature of a particular deta item, either or
both kinds of subscripting may be affixed to it.

6.1 SUBSCRIPTS OF UNARRAYED DATA TYPES

Unarrayed data types, i.e. those whose declarations contain no

array specification, may at most possess only component subscript-

ing. Unarrayed data items of integer, scalar, and Boolean

types may not possess any subscripting. Allowable subscripts)
for the remaining types, - character, vector, and matrix - are , Y
now each described in turn. ' .

* This Section, for convenience, includes appearance cai.sing . -
change in value under the term "reference", even though !

this is not the most usual meaning of the term. i
§

6-1

[y

s

i - o -

s

CHARACTER

In a character data item, character positions are indexed left P
to right starting from 1. 1In the subscript forms given below,

STRING represents an unarrayed data item of character type with

current working length L.*

® To select the ath character from STRING:

STRING
o

1. o is an integer expression in
the range 1 ¢ o £ L.

° Tghselect o characters from STRING, starting from the
gthi:

STRINGa AT 8

1. o and B are integer expressions. i
2. B is in the range 1 < B ¢ L.) .

3. ais in therange 0 g a L -3 + 1.

* In the case where reference of a subscripted character data
type causes a change in its value (e.g. on the left hand side
of an assignment), somewhat different interpretations of the
subscript forms hold true. An account of these is given in

Section 8.2.

6-2
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

® To select a substring starting with the ath character o
of STRING, and ending with the Rth:

STRINGQ TO 8

1. o and B are integer expressions in
the range 1 { a, B £ L.

2. B g a.

Examples:

if the value of C is 'ABCDEF' then:

> [1

Cs is 'E

02 AT 2 is 'BC!
TOAG is 'DEF'

VECTOR

Elements of a vector are indexed starting from 1. In
the following subscript forms, VEC represents an unarrayed .
vector data item of length L. W

I -

&

" @ To select the ath element from VEC:

VEC
a

st et s

l. a is an integer expression in the
range 1 £ a £ L. '

. .

2. The resulting data type is SCALAR,

R

6-3 v

SR G O 20N AN KN U Aaw e chey eaes O cae s emam - A A o
(o]
o

i mTEICC INCABDNRATEN « 701 CANCORN AVFNUF « CAMBRIDAE, MASSACHUISETTS 02138 + (617) £61-1840

- e - - - - e
- . .- — o —

® To select an a-vector partition starting from the gth
element of VEC:

VECa AT B

1. o is an integer literal value in
the range 2 < B8 € L.

2. B is an integer expression in the
range 1 { B K L ~-oa + 1.

® To select a partition starting from the ath element of .
VEC and ending with the gth, {

VECa TO B ‘

l. o and B are integer literal values i
in the range 1 < a, B £ L. !

2. B> a. i
?
Examples: i *
ifv=[a.5 then: o
9.3 J o
~ 7 - 1 . 3
{ 2.7 § !
. V, = 4.5 (scalar) I ; '
* i -
. Vimo g = 7.1 (2-vector) 4
2.7 .
v2 AT 1 ™ [; g] (2-vector)]
6-4
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « {617) 661-1840 l

MATRIX

Rows and columns of a matrix are indexed starting from 1.

Any matrix subscript must consist of a row subscript followed
by a column subscript. 1In the following ibscript forms, MAT
represents an unarrayed M x N matrix data item.

e To select the element of MAT common to the atP row and
gth column:

MAT
o,B

1. o, B are integer expressions.

2. o is in the range 1 € a < M,
and B is in the range 1 ¢ B < N.

3. The resultart data type is SCALAR.

® To select the ath row of MAT:

MAT

O,*

l. o is an integer expression in the
range 1 £ o < M.

R

2., The resultant data is N-VECTOR.

2

-

3. If the asterisk is replaced by a
TO- or AT- subscript under the
rules given for VECTOR data t{ges,

Y MR e D BE O AR BB A NP D BN B S e e

a vector partition from the a
‘& row may be selected.
4
6-5
" INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840
Ak ———
e — - ——

-

R I A

U ke é %mﬂ‘ff’"‘h"%’“;'“p’"' W

® To select the Bth column of MAT:

] Tghselect a a X Yy matrix partition starting from the
B

MAT*,B

B is an integer expression in the
range 1 € B £ N.

The resultant data type is M-VECTOR.

If the asterisk is replaced by a
TO- or AT- partition under the
rules given for YECTOR data types,
a vector partition from the gth
column may be selected.

row and 6th column of MAT:

MATa AT B, Y AT §

a, ¥ are integer literal values in
ranges 2 £ o« < M, 2K Y<KN
respectively.

B,y are integer expression in
ranges 1 S B M-a +1,
186K N-=-y+ 1 respectively.

Either or both the AT- subscripts
may be replaced by TO- subscripts
under rules already given by VECTOR
and MATRIX types.

Either of the AT~ subscripts may in
addition be replaced by an asterisk
if all M rows or all N columns are
to be included in the partition.-

6-6

= - ———

ITEPMIETRIC] INCORPORATED « 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

gl wed e el e e e ey N e e e .y

PRI

» v RN vy Lok S e I,
- . .

|

r

| S

-

‘ INTERMETRICS /. ORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617 661-1840

Examples:

if M =[1.1 1.2
2.1 2.2
3.1 3.2
M, 5= 2.3
3.1
My 2m03° 5
b.
Me 2271 ° '—%
3.

1.3 then:
2.3
3.3

(scalar)

(3-vector)

(2-vector)

1.2] (3x2 matrix)

[1.1 1.2] (2x2 matrix)

2.1 2.2

6-7

R
A
4

i

T -

po— Lt X

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBR'RCE 4" .7 CHUSETTS 02138 - (617) 661-1840

6.2 SUBSCRIPTS OF ARRAYED DATA TYPES

Arrayed data types, i.e. those whose declarations contain
an array specification, may possess array subscripting.
If the data types are vector, matrix, or character, then
they may, in addition, possess component subscripting.

ARRAY SUBSCRIPTING ONLY

Arrays are indexed starting from 1. In the array subscript
forms given below, TABLE represents an array of length L

of any data type.

e To select the ath array element from TABLE:

TABLEa=

1. a is an integer expression in the
range 1 £ a £ L.

2. The colon is ogtional if the data
type of TABLE is INTEGER or SCALAR.

® To select a sub-array of length a starting from the gth
array element of TABLE:

TABLEG AT B:

1. a is an integer literal value in the
range 1 € a £ L.

2. B is an integer expression in the
range 1 S 8L ~-a+1l. '

3. The colon is optionzl if the data
type of TABLE 1is IN.EGER or SCALAR.

w-8

vt ewsest ey wEe amigY GRS SemaR .

Lot [[

-
w

W ey e -

- (N - f
mmmm———

PR

ok

o

T wm e

® To select a sub-array starting from the oth array
element of TABLE and ending with tue g th,

TABLEa TO B:

1. o, B are integer literal values
in the range 1 £ &, B < L.

2. B g a.

3. The colon is ogtional if the data
type of TABLE 1s INTEGER or SCALAR,

Examples:

if T is a 4-array of booleans with values
(TRUE,FALSE, TRUE, TRUE) then:

T3 TO 4: is (TRUE, TRUE) (still arrayed)

if T is a 4-array of integers with values
(1,2,3,4) then:

T2 is 2 (unarrayed) optional colon
Ty-po 4 18 (3,4) (still arrayed) omitted

if C is a 3-array of characters, with values
(*YES','NO','MAYBE') then:

C1= is 'YES' (selects first array element;

C is ('NO','MAYBE') (still arrayed)

2 10 3:

i
{
|
i
|
|
|
I
|
|
l T2: is FALSE (unarrayed)
|
|
|
|
i

6-9

'INTFRMETRICS i1WSORPORATED « 701 COMCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

- o T ~——-——“

SIS e 8

ARRAY AND COMPONENT SUBSCRIPTING

If TABLE represents an array of vector, matrix, or character
data type, then the following rule shows how array and
component subscripting are juxtaposed.

TABLE<array ss>:<component ss>

1. <array ss>: represents array sub-
scripting of any of the forms
previously described.

2. <component ss> represents any form
of component subscripting legal
for the data type of TABLE, as
described in Section 6.1.

The purpose of the colon now becomes clear: it is required
to distinguish and separate array and component subscripting.

Examples:

if C is a 3-array of characters, with values
['YES','NO','MAYBE') then:

Cy,3 is 'Y (selects 3rd character from third
* array element)

if M is a 2-array of 2x2 matrices with values

B Ed) o

My, 0™ 8 (element in 279 row, 2M4 c¢olumn
Tee of second array element)
6-10

L e A et o)

—

m ' Lo IR i

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 ¢ (617) 661-1840 {?

F o o SRRSO s an

“,

s

Apparently, the colon should be
optional on Boolean data types
also. It is not because the
Boolean data type is a degener-
ate case of a bit string data
type which may possess com-
ponent subscripting.

See: (tbd).

COMPONENT SUBSCRIPTING ONLY

When an arrayed data item of vector, matrix or character
type is required to be given only component subscripting,
array subscripting cannot be totally omitted. Rather, it
must be replaced by an asterisk. Let TABLE represent such
a data item; the subscripting form is then required to be:

TABLE*: <component ss>

1. <component ss> represents any form
of component subscripting legal for
the data type of TABLE, as described
in Section 6.1.

Examples:

if C is a 3-array of characters with values
(*YES','NO','MAYBE') then:

is ('Y','N','M') (makes 3-array from first character

c -
]l of each item)

if M is a 2-array of 2x2 matrices with values -

()

M*:l,l = (1,5) (2-array of scalars)
“.:-,2 = ([f] ' [g]) (2-array of 2-vectors)
6-11

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 651-1840
»

ey

HAL/S allows more general forms of
subscript expressions than just
those stated in Section 6. In
addition, a symbolic form of
reference to the last array or
other element of a data type is
allowed. Even more complex

forms of subscripts apply to parts
of tree organizations of data
('structures').

See: (tbd)

6.3 SUMMARY

This scction has comprehensively described the forms of
gsubscripting available in HAL/S. At this point in the Guide,
sufficient information has been given to allow the user to be
able to reference different kinds of data. Section 7 shows
how operations may be performed on tiie data so referenced.

6-12

wirmnurTing INCORPORATED « 701 CONCORD AVENU_E + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

TTT e = ———y - - - e

Coer Y :u‘ .. ‘) n....: 4

i

s

L A A e A e e

at

P

— ————— —c-‘ ' w———

z
1
|
[
[
i
:

._‘._IN.T.EF‘.‘.'ET’?"‘

7. EXPRESSIONS

Section 6 dealt with the referencing of declared data items.

At this point it is appropriate to describe how the valun:s of
these data items can be manipulated. 1In HAL/S the construct
which specifies operatinns on data items is called an EXPRESSION*.
In many cases it is very close in form to the generally accepted
notion of a mathematical expression.

Expressions consist of sequences of o;erations, possibly paren-
thesized in places to override the precedence rules of HAL/S.

Each operation is comprised of one or two operands and an operator.
This section begins by describing the legal HAL/S roverations, and
then continues to show how they are combined into ¢ s>ressions.

Previous sections of the Guide have divided data items and literals
into three broad classes: arithmetic, character, and Boolean.

It is convenient to divide the operations to be described into the
same three classes. The type of an expression is the type of the
value resulting from its executlion, and may, in general, be
different from the types of some of its operands.

7.1 ARITHMETIC OPERATIONS

Arithmetic operations are the most numerous of all operations

in the HAL/S language. They comprise operations on vector, matrix,
integer, and scalar data types. HAL/S recognizes the folloswing
operations:

¥"The storing of the resu t of a HAL/S EXPRESSION into a data
item is performed by an A.SIGNMENT statoment, of which the
EXPRRSSION forms a part.

7-1

5 INZORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02133 « (617) 661-1840

Symbcl Purpose
‘ﬁ
*x exponentiation, inversion,
transposition

(blank) multiplication

* vector cross product

. vecter dot product

/ division

+ addition

- subtraction, negation

NEGATION
Negution is a binary operation applicable to any aritlmetic
data type:
Symbolic form: - R
1, The legal data typzs ror R are given
by the fcllowing table: E
R-type
MATRIX R
VECTOR '
SCALAR
INTEGER 1 '
2. Negation of vector and matrix types
implies element-by-element negation.
Examples:

i
if I is an integer and I3 § (
then -I = -
n =-I S [-1 5] g
if Vv i3 a 3-vector and V
and - V = []]

INTERMAFTRICS INCORPORATED -« 701 CONCQRD AVEN'JE * CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840
N

!

§’

e—y []] - sunng e — ———] ——— P

{
|

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

ADDITION AND SUBTRACTION

Addition and subtraction can only take place between compatible

arithmetic data types:

5.

Symbolic form: L+ R

The legal combinations of data types
are indicated by the following table:

L ~type R -type
MATRIX MATRIX
VECTOR VECTOR
SCALAR | { SCALAR
INTEGER f INTEGER

Operations on matrix and vector operands
imply element-by-element addition and

subtracticn.

The operands in a matrix addition or
subtraction must have the same row and
celumn dimensions.

The operands in a vector addition or
subtraction must have the same lengths.

In a mixed integer-scalar operation, the
resuit is scalar. The integer operand is
first converted to single precision

scalar.

7-3

T

2 e m

Examples:

If I is integer with I = 5
| S is scalar with § = -4.2
then
I+1 = 6 (integer result)
I+ 0.5 =25.5 (scalar result)
S +1 z ~3.2 (scalar result)
I~-S 9.2 (scalar result)
if V1 is a 3-vector with Vl1z [-1.0]
-2.5
3.2]
V2 is a 4-vector with V2 = [0.5]
2.2
[1.5

then the operation V1 + V2 is illegal because the lengths of
V1, V2 do not match;

but
vl - V21 T0 3 - -1.5 is legal because subscripting
~-2.5 of the R operand has produced
1.0 a 3-vector.

Using S, V1 above,
s +V1 is illegal because the types are incompatible;
but S + V13 2 -1.0 1is legal and has a scalar result because

subscripting has changed the R operand to
scalar type.

7-4

INJERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

- P ——
- v M v - .-

=

{
l
i
i
{
!
-
.
l
[
!
l
B
-
1
1
N
.
L

if Ml is a 3 x 2 matrix with M1 = 1.0 0
-0.5 -1.0

0 0
M2 is a 2 x 2 matrix with M2 = 0.5 -0.5
1.0 1.0

then M1 - M2 is illegal because the row dimensions of the
operands do not match;

but, M12 AT 1.% M2 ={ 0.5 0.5 is legal because the
' -1.5 =2.0 number of rows in the
L operand have been
reduced to 2 by sub-
scripting.

"DIVISION

In division, the dividend may be any data type, but the divisor
.must either be integer or scalar.

Symbolic form: L ./R

1. Tﬁé legal combinations of data types are
given by the following table:

L -type l R -type i
MATRIX

VECTOR { SCALAR

SCALAR INTEGER

INTEGER

2. If the dividend is of matrix or vector
type, element—by-element divisior. by the
Roperand is implied.

3. If either or both operands are of integer
type, they are first converted to scalar

type L]

7-5
IMTERMETSISS LOORPOR/ FD « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617

E T T

o 1840

‘- oo -

-

Toa

Examples:

1/2 = 0.5 (both integer operands converted to scalar)

2.0
4.0
6.0

i

if V is a 3-vector with V
then v/2 = §1.0

2.0

3.0

if M is a 2 x 2 matrix with M = [1.0 -0.5
0.2 0.6

S is a scalar with S = 0.5
then S/M is illegal since the . operand may not be of matrix
type,

but M/S = [2.0 -1.0
0.4 1.2

DOT PRODUCT

The HAL/S dot product operation corresponds to the mathematical
dot or inner product of two vectors. In mathematical notation:

8 =<u, v ors =uly

where u, v are column vectors and ienctes the transpose.

Note that HAL/S does not require the user to distinguish between
row and column vectors because the position of the operand in the
operation is sufficient in itself to allow it to be interpreted

as one or the other.

Symbolic form: L . R
1. The operands of the dot product must be

as shown:
L-type | R-type
VECTOR | VECTOR
2. The lengths of each operand must be
the same.

3. The result is of Ecalar type.

7-6

|
|
!
|
|
!
!
I
|
I
i
i
1
1
i
|
i

TTSSioe ANNDNDATEN « 701 SONCARND AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840 !

e

“"';%;g‘“ [

RAW

PRI MF’?’

-—--—-———-——-—n-m

-

Example:

If V is a 3-vector with v =

then V.V =

CROSS PRODUCT

The HAL/S cross product operation corresponds to the mathematical

H

{
oo
aowm
| SR

1.5

vector cross product in 3-dimensional Euclidean space:

if w is perpendicular to u, v

v as shown
Y and |w| -]u||v|sin 0
N 0 then w = u x v

Symbolic form: L *R

THe type of the operands must be vector:

, L-type | R.-type
VECTOR | VLCTOR

Both operands must be of length 3.

The result _-s a 3-vector.

Example:

if V1 is a 3-vector with v1 = fo0.5]
0
0 |
V2 is a 3-vector with V2 = [0]
0.5
0
then V1 # V2 = [o]
0
0.25
7-7

INTERMETPRICS 'NCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

" p—

~

—

Lt

T Y

e

S

';'

MULTIPLICATION

The HAL/S language has no explicit symbol for multiplication:
the adjacency of two operands signifies this operation. Multi-
plication can take place with arithmetic operands of any type:

If operand types are either integer or scalar, multiplication
in the regular arithmetic sense is implied; .« CASE <:>

if one operand is integer or scalar, and the other vector or
matrix, then element-by-element multiplication is implied;

.« .CASE @

if both operands are vectors then the outer product is implied,
the result being a matrix; ««CASE <:>

if both operands are matrices, the matrix product is implied;
...case (B

if one operand is a matrix, and the other a vector, then
a vector-matrix product is implied, the result being a
vector. ««CASE (:)

The symbolic form for multiplication is as shown:

Symbolic form: L R’

1. At least one blank character must
separate the L and R operands.

The additional rules applicakle to each of the cases Zescribed above
1re now listed in turn.

INTERMETRICS

7-8

- e 2, . - - R

-

!
{
!
§
i
i
i
i
!
!
|
i
1
1
1
1

INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 '

s, 5 e

SRR Saghy

|

[.

¥

Gl & SN S &S O &S W0 U D @ T IS s e e

L

F 4

4 - <
R R e A I T s OF STTAICE

-

The operand types are:

i-type | r -type

INTEGER} { INTEGER
SCALAR SCALAR

If both operands are integer, the
result is integer, otherwise it is
scalar.

If one operand is integer, then it
it first converted to single precision
scalar.

Example:

n

If I is integer with I = 10

then 1,5E-2 I = 0.15 (scalar result)

case (2)

The operand types are:

L ~type R ~type
INTEGER} {VECTOR

SCALAR MATRIX
VECTOR } { INTEGER
MATRIX SCALAR

Element-by—~element multiplication
of the vector or matrix is implied.

If an operand is of integer type, it
it first converted to single precision
scalar.

— T

7-9

\ “ 3,
¢
' INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -+ (A17) 661-1840

-

|

Examples:
if S is scalar with S & 1.5 -

M is a Z x 2 matrix with M s[0 0.3]
0.1 0.4

then s M = 0 o.4§]
-0.15 0.6

and M S s[0 0.45]
X 0.15 0.6

CASE (:)

2. The operand types are:

L-type | R-type
VECTOR | VECTOR

3. If the L-operand is of length m,
and the R operand is or length n,
the result is an m x n matrix.

Examples:
If V1 is a 3-vector with V1 = [1.0]
V2 is a 2-vector with V2 = [0 5

then V1 V2 = [.5] (3 x 2 matrix)
- .6
.6

and V2 V1 2 [](2 x 3 matrix)

7-10

- _ mm

IMIERMFTRICS INCORPORATED TO1 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

|
!
i
!
|
!
!
|
i
l
]
1,
!
1
I
|
i
l

[y

L

b .

| s Iﬁf IS v Rt o s e
-~
el ~ A
- . e .

E -

’D

v —y

INTERMETR!Z% INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

2. The operand typeslare:

|~type | R-type
MATRIX | MATRIX

3. The number of columns in the
{ operand must equal the number of
rows in the R operand.

4, If the | operand is an m x n matrix
and the R operand is an n x p matrix,
the result is an m x p matrix.

Examples:
If Ml is a 2 x 3 matrix with M1 = [1.0 1.0 2.0]
. 0.5 -0.5 1.0
M2 is a 3 x 2 matrix with M2 = [0 0.5
0 1'0
0 1.0
then M1 M2 = [0 3.5 (2 x 2 matrix)
0 0.75
and M2 M1l =

0.5 =0.5 1.0

[0.25 ~-0.25 o.sj (3 x 3 matrix)
0.5 =0.5 1.0

Note that by using partitioning subscripts that
Ml 2 7o 3 M2 is illegal because of dimension mismatch;
’

but M2 Ml 0.25 -0.25] is still legal

*’2 To 3 : 005 "0.5
0.5 -0.5

7-11

i o - e . R ...

CASE @

2. The operand tvpes are:

~type { Rtype
VECTOR MATRIX
MATRIX VECTOR

3. If the [operand is an m x n matrix,
the R operand must be an n-vector,
and the result is an m-vector.

4, If thel. operand is an m X n matrix,
the R operand must be an m-vector, and
the result is an n-vector.

Note that the position of the vector operand again determines
its interpretation as either a row or column vector.

Examples:
If M is a 3 x 2 matrix with M = |0.5 1.0
0 1.0
0.2 0.4
V is a 3-vector with V = 1.0
-1.0
1.0

then VM = [0.7 (2-vector)
0.4

and M V is illegal because of dimension mismatch;

however, M V1 ™ 2 E :g.g is legal.

-0.2

7-12

-~ -2 ——— ———

ronmn |

. -3

’

{
{
i
]
I
i
|

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840'

-m*wﬁ R S SRR

‘&

@

L i

INTERMETRICS *:CORPORATED - 701 COMCORD AVENUE « CAMBRIDGE, MASSACHUSETTS €2138 - :8i7) 661-1840

EXPONENTIATION, INVERSION AND TRANSPOSE

In HAL/S, a single operator serves for exponentiation, matrix
inversion, and matrix transpose, the operand types serving to
distringuish between ther..

e If both operands are integer or scalar, then exponentiation
is implied; .+ .CASE <:)

e if the left operand is a square matrix, and the right is
an integer-valued literal, a repeated matrix product or repeated
product of inverse is implied; . . .CASE (:)

o if the left operand is a matrix, and the right operand is
the character 'T', then the transpose is implied. .. .CASE (:)

These operations take the general symbolic form:

Symbolic form: L ** R

l. This is the one-line format version.
In multi-line format the operator symbol
is omitted and R is placed on an exponent
line. See Section 2.3.

A

The rules for each of the cases listed above are now described in R
turn.

.

&y

7-13

‘«'«

2, The cperand types are:
L -type] R -type

INTEGER } { INTEGER
SCALAR SCALAR

3. If the L operand is inteyer and
the R operand is a non-negative
integral-vaiued literal, then tae
result is integer, otherwise it is
scalar.

Ut adr® BN WS WIS e

4. Consistent with Rule 3, if the result
is scalar, then any integer operands
are first converted to single-precision
scalar.

»

-

[)

Examples:

If I is an integer with I = §

then I #» 2 = 10 (integer result)
and I#*a-]1 = 0.2 (scalar result)
als> 2#a(.5 = V2 (scalar result)

7-14
ot
H INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRINGE, MASSACHUSETTS 02138 « (817) 661-1840 ‘ S

P ym—

2. The operand types are:

L-type | R -type
MATRIX I INTEGER

3. The L operand is a square matrix.

4. The R operand is an integral-valued
literal. The following table shows
the effect of different ranges of
values of the R operand:

value result
<=2 repeated product of inverse
-1 inverse
0 unit matrix
l- no-operation
> 2 repeated product
Examples:
If M is a 2 ¥ 2 matrix with M = i 0.5 1]
-005 0
then M? = [-0-25 0.5
-0.5 ~0.5
Ml os o 2]
1 1l
ana M0 = l1.o 0 I
0 1.0
7-15

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

S oF R 2k el ol

2. The operand iypes are:

'. =type | R -type
MATRIX T

3. If the lLoperand is an m % n matrix,
then the result is an n x m matrix.

4., If R is symbolically T, then transpose
is indicated even if T ic a declared
data item.

Examples:

T€ M is a 2 x 3 matrix with M = [1.0 0 3.0]
2,0 0 4.0

0 0

then MT 3 [1.0' 2.0]
s 3.0 4'0

if V is a 3-vector with VS [1.0]
2.0
3.0

then v is illegal because the L operand is not matrix typ?.

The transpcse of a vector is not needed in the HAL/S language.

7-16

renbiETmes ICORPORATED « 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 - (617) 56'.-18409
o]

‘«i

-~

A———- o o - -

-

ey) —nny - e

— — mind mam S

R

NOTE ON PRECISION COWVERSION

It is possible that the precisions of the two operands may differ

in any cf the operations described.
conversion usually takes place before the operation is executed.

The rules under which it takes place are as follows:

In these cases, precision

1.

No precision conversion is possible in
unary operations: transposition is
considered a unary operatioa.

Where an operation specifies type con-
version from integer to sinjle precision
scalar, this conversion is carried out
first.

If only one operand is integer and no
type conversion is implied, no precision
conversion takes place.

If both operands have the same precision,
the result is of the same precision (even
if not of the same type).

If the operands have mixed prezision, the
single precision operand is converted to
double precision. Then rule 4 is applied.

INTERHIFTRLTS 11.CORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

7-17

‘9

&
3

-

z

4

¢
"

7.2 CHARACTER OPERATIONS

There is only one character operation in HAL/S: concatenation
of character strings.

Symbol | Purpose

i } catenation
CAT

CATENATION

The utility of catenating character strings is obvious in
the generation of output listings. The rules related to
the catenaticn operation are as follows:

Symbolic form: L || K
CAT

1. The L and R operands are not just
restricted to character type: some
degree of implicit type conversion
is allowed. The following types are

legal.

L-type | R-tyvne
INTEGER (INTEGER
SCALAR iSCALAR
CHARACTER) | {CHARACTER

2. The rules for converting integer and
scalar types to character type are to
be found in Appendix .

7-18
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 ¢+ (517) 661-1340

oo el B -
A R M e

+

Examples:

If C is a character item with C = 'UNITS'

I is integer with I =10

then 'TEN' || C = 'TEN UNITS'
I||]Cc = 'l0 UNITS'
and 1|}jxr = r'i0 10
H
: 7-19

INTFRMETRICS INCORPORATED + 701 CONCORM AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

—

7.3 BOOLEAN OPERATIONS

Boolean operations are logical (binary) transformations on Boolean
operands. HAL/S recognizes the following operations: '
Symbol Purpose i
& } : . .
AND logical intersection ;
OR } logical conjunction
-) _]
NOT } logical complement .
. : {
COMPLEMENT '

The complement operation complements the logical value of a
Boolean operand. It takes the following form.

Symbolic form: =~ R
NOT

¥ o f

1. The R operand is of Boolean type.

Example:
If B is Boolean with B Z TRUE

then =B = FALSE

1

{
\
{
{
|3
A

7-20

INTERMETRICS INCORFCRATED « 701 CONCORD AVENUE + CAMBRICGE, MASSACH' 'SETTS 02138 + (617) 661-1840 ”

Lo PV SRR P

el A ¥ e

R T N

CONJUNCTION

The conjunction operation causes the logical values of two
Boolean operands to be OR'ed together.

: LR
Symbolic form: & OR

1. The L and R operands are of Boolean type.

2. The truth table for the resulting Boolean
is as follows:

T=TRUE L
F=FALSE T F
-
T T T
R
F T F

Examples:

If B is Boolean with B = FALSE

then B|B FALSE

n

B|TRUE ¥ TRUE

7-21

INTERMET RICS INCORPORATED « 701 “ONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 651-1840

R S T NP N

A

INTERSECTION

The intersection operation causes the logical values of two
Boolean operands to be AND'ed together.

: . L & R
Symbolic form: AND

1. The L and R ~perands are of Boolean type.

2, The truth table for the resulting Boolean
is as follows:

T=TRUE L]
F=FALSE T F
R T T F

F F 2

Examples:

If B is Boolean with B = FALSE

then B&TRUEZ FALSE

B&B FALSE

7-22

ERrmTmec IrAReNNATEN < 701 CONTORD AVFNUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) $61-1840

I
I
|
|
i
i
\
!
!
i
|
I
I
1
d
]
1

P

-
A
1
}
5

}

'
Lo
: .

7.4 COMBINING OPERATIONS & PRECEDENCE

It is obviously desirable to be able to combine operations so
as to create expressicns of any required complexity. In combining
operations, the following information is necessary:

® The order in which operations are executed (the order
of "precedence");

e the way in which the precedence order can be overriden.

ARITHMETIC *ND CHARACTER PRECEDENCE

The precedence of HAL/S operations on arithmetic and character
data types are shown in the following table:

Symbol Precedence Purpose

FIRST
*k

(blank)
*

exponentiation, etc.
multiplication

cross product

dot product

division

addition

subtraction, negation
catenation

I+
[LR S

[{, car

-+
>
N-aonon
=

Two rules clarify and modify this information:

® Sequences of operations of the same precedence are evaluated
left to right, except fcxr ** and /, which are evaluated right

to left.

® gequences of multiplications are sometimes reordered to minimize
the number uf elemental products required.

7-23
INTERMETRICS INCORPORATED + 701 CONCORD AVINUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

Examples:

In the following expression, the numbered pointers show
the order of execution of operations:

'RESULT OF STEP '||N|]' 18 'l|31+s2 - V1.v2/2/2

$bddb

The precedence rules for Boolean operations are stated separately
because there are no implicit conversions causing interaction

with arithmetic and character operations,

BOOLEAN PRECEDENCE

- ymbol Precedence Purpose
FIRST

=, NOT 1 complement

&, AND 2 intersection

[, OR 3 conjunction
LAST

Sequences of operations of the same precedence are evaluated
left to right.

Examples:

In the following expression, the numbered pointers show the
crder of execution of operations:

-Bl1|B2 & ~B3

b b

7-24

miTelrTe e INCORPORATEN « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

I
i
1
1

d
?

-

1

it

f
!
f
I
{
!
4

i

[

[

i
\

-~ .

OVERRIDING PRECEDENCE ORDER

In HAL/S, the order of precedence can be overridern at will by
the use of parentheses, nested to any arbitrary depth.

Examples:
In the following Boolean expression,
B1|B2 & B3|B4 & B5
d@ b
parentheses may change the precedence order as shown:

(B1|B2) & ((B3[B4) & B5)

In the following arithmetic expression,

Sl + 522 + 83/2

bob

parentheses may change the precedence order as shown:

((s1 + s2)2 + s3)/2

7-25

~ndk pmmy pumd e PN paid el ead smew g ened peas sams WD Gl um o

INTERMET: S INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

7.5 SOME EXPLICIT CONVERSIONS

As evidenced in Section 7, there are few implicit type conversions

in the HAL/S language.

However, there is a comprehensive range of

explicit conversions, some of which are now described.

PRECISION CONVERSION

Any arithmetic expression may have its precision explicitly

changed as follows:

(<expre551on>)@ DOUBLE
(<expre551on>)@ SINGLE

1. In the first form, if <expression> is
a single precision arithmetic precision,
it is converted to double precision.
If it is already double precision, the
conversion has no effect.

2. In the second form, if <expression> is
a double precision arithmetic expression
it is rounded to single precision. If
it is already single precision, the
conversion has no effect.

Example:

If A anl B are single precision, then the resuit of

(A + B)g pounLe

is double precision, the type remaining unchanged.

7-26

|
i
!

i

|
|
!
|
!
!
l
i
I
i
I
d

]

INTERMETRICS INCORPORATED - 701 CONCORD AV!I:NUE -« CAMBRIDGE. MASSACHUSETTS 02128 « (617) 661-18403

"’5

2
;
:
H
i

‘—V

-—e esw oONS O U G Il AR SN T A TN B G R e o e

| INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

VECTOR CONVERSION

A vector can be synthe ized from a list of scalar or integer
expressions using the construct shown in the following table:

Examples:

VECTORn (<exp>, <exp>.....)

The subscript number n specifies the
length of the vector to be created, and
lies in the range 1 < n < 16*,

If n is omitted the resulting vector is
assumed to be of length 3.

Each <exp> is a scalar or integer
expression,

The number of expressions in the list
must match the implicit or explicit
result length.

The result of the above conversion is in
single precision.

The matrix is assembled row by row from
the list.

VECTOR(1, 2, 3)

sreatas a 3-vector with value [1]

¥ This valv> may be implementation dependent.

2
3

for exceptions.

7-27

See Appendix

S S

T Rl P 8.5

‘ﬁ

if S is a scalar with 8§ = 0.5 then
VEC'.[‘OR4 (s, Sz, S+1, 0)

creates a 4-vector with value

Note that even if the arguments are double precision the result
is in single precision. To specify double precision in a vector
conversion, the following modified form is used:

VECTOR@ DOUBLE, n (<exp>, <exp>)

1. The meanings of <exp> and n are as before.

2. If n is not specified, the preceding comma
is also omittead.

Examples:

2

creates a double precision 3~vecicr with value [l]
3

VECTORy poupLe, 41 2+ 7 4)

creates a double precision 4-vector with value

7-28

e Y :

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (€17) 661-1840‘

o -

i

——

R S N WS G IF B O WmE G P W e e e

MATRIX CONVERSION

There exists a m2thod of synthesizing a matrix from a list of
integer or scalar expressions analogous to the ve:tor conversion
described:

—

MATRIXm n(<exp>, <eXP>, sesvses)

14

1. The subscript numbers m, n specify <he
row and column dimensions of the matrix
to be created, and must lie in the range
l <m, n< 16*,

2, The subscript may be omitted, in which
care the resulting matrix is assumed to
be 3 by 3.

3. Each <exp> is a sralar or integer
expression.

4. The number of expressions must match the
total number of elements in the resulting
matrix.

5. The result of the above conversion is in
single precision.

¥ This value may be '.plementation depenc..t. See Appeniix
for exceptions.

7-29

INTERMETRICS INCORPORATED - 701 CONCDRD AVENUE « CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

VRN SENIREL ., SEPRTY

Examples:

MaTRIX(1, 2, 3, 4, 5, 6, 7, 8, 9)

creates a 3 x 3 matrix with value {21! 2 3]
l4 5 6
7 8 sof
MATRIX (.5, o0, 0o, o, 0.5, ¢
2, 3
creates a 2 x 3 matrix with value (1.5 0 0]
o 0.5 o

Note the order of assemkly in each case.

As in the case of vector conversion, a modifie? form is —equired
-if the result is to be in double precision:

[

MATRIX (<exp>, <2xp>)

@ DOUBLE, m, n

1. The meanings of m, n and <exp> are zs
before.

2. If the dimension subscript is omitted, the .
preceding comma is also omitted. l

Examples:

.
[

MATRIX (1, 2, 3, 4, £, 6, 7, 3, 9)

@ DOUBLE

4 5 6

]
7 8 9]] g
o &

creates a double precision 3 x 2 matrix with valua [1 2 3

MATRIX, [oonre . 3(1.5, 0, 0, 0, 0.5, 0) gf
creates a double precision 2 ¥ 3 matrix with value [1.5 0 ‘~u,
n 0.5 0
7-30 i‘.
IMTERCTRIC])\ CORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617" 56'*384(" %

&

B N Y]

The explicit conversions described

are those most commenly required fer
numerical aralysis. However, HAL/S
contains many other explicit con-
version function forms corresponding
to conversions between most data types.
See: tbd.

paat e F

I A
€

(P
O |

TN CONCARND AVENLIE « CAMBRIDSE. MASSACHUSETTS 02138 - 1517) 661-1840

7-31

.r..‘

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661~1840'§

7.6 SUMMARY

Section 7 has described how HAL/S expressions are synthesized
from operands and operators, and in what order such expressions
are exeruted. Expressions, particularly of integer and scalar
type, form parts of many HAL/S language constructs. Section 6
referred many times to the use of integer expressions in sub-
scripting.

Section 8 describes the assignment statement, which causes the
result of an expression to be stored in some data item or
items.

;
|

7-32

Lo

8.1
8.2
8.3

8.4

sTrnarTone IrARPNARIATEN « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

8. ASSIGNMENTS (TBD)

ARITHMETIC ASSIGNMENTS (TBD)
CHARACTER ASSIGNMENTS (TBD)
BOOLEAN ASSIGNMENTS (TBD)

SUMMARY (TBD)

8-1

‘i

TN fox,

4

4

/‘o-ww«-&-'.- - M""'.? ;f'

’ I
L l
I|

9. CONDITIONAL STATEMENTS AND BRANCHES

Section 9 is primarily concerned with the HAL/S conditional
statement, by which other executable statements may be
conditionally executed (or by which their execution may be
conditionally avoided). Together with statement groups,
which will be described in Section 10, they form a crucially
important part of the HAL/S language.

The HAL/S language encourages programmers to avoid using

GO TO statements to cause branches in execution., Their

total elimination, however, is not desirable. This

Section therefore also describes the HAL/S GO TO state-

ment, and statement labels, which are their destinations.
Statement labels are, in addition, needed for other constructs
to be described in Section 10.

9.1 THE CONDITIONAL STATEMENT

In HAL/S, the simple version of the conditional statement is
an "IF clause" containing an expression evaluable as either
TRUE or FALSE, followed by a "true part" which is executed
only if the IF clause is TRUE. The simple version may be
augmented by an "ELSE part" which is executed only if the

IF clause is FALSE,.

e €

9-1

MTERMETRICS INCORFORATED + 701 CONCORD AVENUE + CAMBRINGE, MASSACHUSETTS 02138 « (617) 661-1840

SIMPLE IF STATEMENT

The form of the simple version is:

| IF <exp> THEN <statement>;
|

1. <exp> is an expression which is
evaluable as either TRUE or
SFALSE. It may be either a
BOOLEAN expression or a rela-
tional expression (these are
described in Section 9.2).

2, <statement> constitutes the true
part of the conditional statement.
Except as noted in Rule 3 it may
be any executable statement,
either simple or compound.

3. <statement> may not possess a
label, and may not be another
conditional statement.

4, If <exp> is FALSE, execution proceeds }
to the next statement. If TRUE, i
<statement> is executed first.

oo 1]]
.
P
. .

9-2
viTERTArTRIne MIAARPARETER « 70t CONCC 3N AVENUF « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

‘_,4
1
1

ol el e e

Examples:

|
I IF B|C THEN X = 0;
Y = 1;

X is set to 0 if either B or C or both is true:
the flow diagram for these events is:

y

evaluate
B|C

Yes

No

Set

~—e
A

IF B|C THEN D
=
=

E
X
Y

<X N

0
1
1

“eo we we

'
1
' -
| +
|

END;

The true part is a compound statement containing
two assignments.

| IF B THENIF C THEN D = 0! ;

! Illegal because true part is a conditional statement,
in violation of Rule 3.

S s gk 00 T W SR S S N B R e e wes e

9-3

i ITERUBTRINS IMCORPC RATEN « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

AUGMENTED IF STATEMENT

The IF statement when augmented with an ELSE part takes

the form:

IF <exp> THEN <statement>;
] ELSE <else stmt>;

i ——

The form of the IF clause and
true part are the same as in
the simple conditional state- !
ment,

<else stmt> constitutes the
ELSE part of the conditional
statement. It may be any
unlabelled executable state-
ment either simple or compound.

e ¥

If <exp> is FALSE, execution
proceeds to the next statement
via <else stmt>. If TRUE, it
proceeds to the next statement
via <statement>.

- 3
—

9-4
T
I AATAARD SUR LT L £ MBRINAE S AGRACHLISFTTS 07138 ¢ (617) 661-1840”

e,

Examples:

IF B|C THEN X = 0;
j ELSE X = 1;

} .
X is set to 0 if B or C or both is true,

otherwise X is set to 1. The flow diagram
for these events is:

Y

evaluate
B|C

is
No result Yes

TRUE
\7/

|
|
i
|
|
i
' Set Set
i
|

Here, both true and ELSE parts are compound
statements containing two assignments each.

9-5
' 1“1 7ty arm
'TTOINE INCARPARATEN - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

(IF B THEN X = 0;
ELSE IF C THEN X = 1;

by
|

=2;

This is legal: the ELSE part of a conditional
statement may itself be another conditional
statement: the flow diagram for these events
is:

No Yes

Set

Set
Y =2

9-6

TTE I AATAATS AUCNIE L CAUPRINGE MASSACHUSETTS 02138 ¢ (617) 661-184

» o——

l
!
|
!
|
!
|
|
I
i
i
i
i
1
A

PR T I

;
3
3)

i

‘ﬁ

£

f-

i ._!.-—.- fo'r‘”“. ;Q'

9.2 RELATIONAL EXPRESSIONS

A
As was stated in Section 9.1, there are two valid forms
of expression in an Il clause, BOOLEAN, and relational.
BOOLEAN expressions wese described in Section 7; relational
expressions only appear in a limited number of HAL/S
constructs, among them conditicnal statements, and are now
to b2 described.
The simplest form of a relational expression is merely a
compariscn between two like quantities. The result is
either TRUE or FALSE. More complex forms of relational
expressions result from combining comparisons with the
BOOLEAN operators &, |, and ~.
COMPARATIVE OPERATIONS
HAL/S recognizes the following comparative operators:
Symbol Purpose Class
> greater than
< less than
<= less than or equals
EOE > } not greater than I '
> = greater than or equalr
< 1
fOf } not less than i
= ecmals
I
NOT =
- - } not equals
9-7

TTT AT P TARPANATEN . INT CONCARN AVENNF « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

The operands of comparative operations may, in general,

be expressions of any of the types Jdescribed in Sectic. 7.
Depending on the type of operand, the operators may be
restricted to Class II only, or may be either Class I or
Class II.

e CLASS II ONLY

=

Symbolic form: L NOT =R
=

1. Legal combinations of data types
are indicated by the following

table:
L-type | R-type
VECTOR VECTOR
MATRIX MATRIX
BOOLEAN BOOLEAN

CHARACTER CHARACTER

2. Comparison of vector and matrix
operands implies element-by-element

comparison.

3. The operands in a vector comparison
must be the same length.

4. The operands in a matrix comparison
must have the same row and column
dimensions.

9-8

vl

HIYTANETOINe 1ICM IPCRATEN « 701 CONCORD AVENUE < CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

‘ﬁ

Examples:

If STRING is character type with
STRING = 'ABC '

STRING = 'PQR'
is FALSE.
STRING = 'ABC '

is FLLSE - character strings must be of the same
length.

IfV, W are 3-vectors with

I

then V = V1 is FALSE,
Vl -V = 2V is TRUE.

v

If further V2 is a 2-vector with V2 = [1]
1
the,r V1 = V2 is illegal because of length mismatch,

but Vll o 2 "~ V2 is TRUE,

9-9
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGY:, MASSACHUSETTS 02138 + (617) 66*-1840

13

‘f

';;

i

|

;“.
!1

|

13
+

3

-

® (LASS 1 AND CLASS I1

>

<

>=
<=
NOT

Symbolic form: L -=> R

NOT
- <

NOT

- =

v

A

Legal combinations of data types are
indicated by the following table:

L-type | R~-type

* INTEGER INTEGER
SCALAR SCALAR

" In amixed integer-scalar operation,

the integer operand is converted to

‘gcalar before the comparison takes

place.

Examples:

If I is an integer with I £ 5§

then

TITR TN OO RO NAVES T . CAMRRINDGFE MASSACHUSETTS 02148 ¢ (617) 661-1840

I =5 is (RUE
1 < 4 is FALSE
I>=5 is TRUE

95-10

- ek NS oM

———

. 4

t

1.
i
!
g
|

‘ﬁ

l
{
¢

r
|

NOTE ON PRECISION CONVERSION 5

It. is possible that the precisions of the two operands
may differ in any of the operations described. 1In these
cases, precision conversion takes place before th: opera-
tion is executed. The rules under which it takes place
are as follows:

1., Where an operation specifies type
conversion from integer to single
precision scalar, this conversion
is carried out first.

2. If only one operand is integer and
no type conversion is implied, no
precision conversion takes place.

3. If both operands have the same
precision, the result is of the
same precision (even if not of
the same type).

4, 1If the operands have mixed precision,
the single precision operand is
converted to double precision. Then
rule 3 is applied.

]

!

|

i *

1
9-11 y

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

m—d LT bt L, s s U

A

— - - -I

COMBINING COMPARATIVE OPERATIONS

Comparative operations may be combined as if they were
BOOLEAN operands, using the rules for Boolean operations
described in Section 7. It is important to note however,
that comparative operations are not BOOLEAN operands in
the sense that they can be mixed with actual BOOLEAN data

items.

® Boolean expressions may contain no comparative operations.

® Relational expressions may contain no Boolean operands.

Examples:
If V1, V2 are 3-vectors with
vl = 1 e V2 = 3
2 2
3 1
and C is character with C = 'ABC'
then

vi

v2[c, = 'A' is TRUE

V1l = V2 & C1 = 'A' is FALSE
If B is Boolea: then

B|V1l = V2 is illegal

9-12

mITrRnrToInt INCORPORATED « i CONCQRD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-18403}

‘,i

e

L] X

PRECEDENCE

The following table shows the precedence of operations
involved in a relational expression:

Symbol Precedence Purpose
FIRST
1 {operations involving
operands of comparisons
>)
<
<= J }
NOT >, —> 5 comparative
e > operations
NOT <, =<
NOT =, —=)
&, AND 3 logical operations
|, OR 4 on comparisons
=, NOT *
* Any operand of this operator must always be parenthesized,
and is evaluated immediately after evaluation of the
operator itself.

9-13

HITEEMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 6511840

- — v —— .

-

Example:

In the following expression, the numbered pointers show
the order of execution of operations:

-~ (S4 < 0|s5 > 0) THEN

bbd b b

Section 9.2 ends with scme more examples designed to
clarify the foregoing.

Examples:
Let V be a 3-vector with vV =| 1
2
- 3
|
| IFV =1&V =2THENV = 0;
|S 1l ¢ 2 3
| IFV >0 |V <0 THENV = 0;
|S 3 " 2

The first statement will cause V% to be set to
R

. zero since both comparisons are UE. Then
vV = 1
2 -
0

In the second statement, neither comparison in the
N relational expression is true. Hence, the "true
part" is not executed and finally

VvV = 1l
2
0 as before.

9-14

ceem mwminm iAAREARATEN o 701 FONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (517) 661 -1840

. 4 . [}
[V e .t

ciard Dandd wind

9.3 LABELS AND BRANCHES "

In HAL/S, there are two entities connected with the
branching operation: the GO TO statement, which,when
executed causes the branch; and a "statement label"
which is the destination of such a branch. HAL/S
also uses statement labels for >ther purposes, which
will become clear in Section 1(,.

LABELS

Labels are names chosen by the programmer and attached to
statements. More than one label may be attached to a
statement. The way of attaching a single label to a
statement is as follows:

: <lgbel»: <statement>;
1

1. <statement> is any executable
; statement or statement group
(see Section 10), with two
exceptions.

2. <statement> may not be the
"true part" or "ELSE part" of
a conditional statement.

3. <label> is a user-defined
identifier name (see Section
2.2).

9-15

INTERMETRICS INCORFORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Examples:
:ONE: X=X+ 1;
) TWO: Y = 03
]
The following are illegal since they violate
Rule 2:
{ IF = 0 THEN ONE: Y = 0;
JIF X = 0 THEN X = 1;
|ELSE TWO: X = 3;

However, the conditional statement itself may
be labelled:

|
| THREE: IF X = 0 THEN ¥ =1
|

-e

If more than ore label is required, then they follow each
other in sequence.

Example:
3

IONE: TWO: 'MHREE: X =X + 1;
|

9-16

.

El
I

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-18403

GO TO STATEMENT

The GO TO statement specifies the label to which
execution branches: it takes the form:

! GO TO <label>;
i

1. <label> is a label attached to
some statement to which execution
is to branch.

Examples:

I
: GO TO ONE;
| The GO TO statement itself may be labelled:

|
: TWO: GO TO THREE;

’ It is important to note that HAL/S places relatively
severe restrictions on the placement of GO TO
. statements and where they may cause execution to
(branch to. Section 1.3 described this on the abstract
t level, and Section 10 further discusses it. in connection
with statement groups.

9-17

‘ INTERMETRICE "NCORPORATED + 701 CONCORD AVENUE + CAMBRIDCE, MASSACHUSETTS 02138 « (617) 661-1840

a w1 e

[A}
Y

~a

ELIMINATING GO TO STATEMENTS

The Guide has stressed throughout that, according to structured
programming principles, GO TC statements are inherently un-
desirable because they tend to disguise the program's flow

of execution.

It will be found that HAL/S contain: a sufficient number of
other constructs to allow GO TO statements to be substantially
eliminated from a program. Following is an example showing
the elimination of GO TO statements.

Examples:
| IF X > 1.5 THEN GO TO ALPHA;
| IF X < 1.5 THEN TO TO BETA;
l Y=Y + 1;
GO TO GAMMA;

| ALPHA: X = X - 0.05;
| GO TO GAMMA;

BETA: X =X + 0.05;

|GammMa: .

l $

This example is programmed in HAL/S in the simplest way
(possibly having been translated from Fortran or an assembly
language). The profusion of GO TO statements disguises the
simple flow of execution, which is interpreted by the following
flow diagram:

< compar >
X with
1.5
-
increment Set Y decrement
X by to X by
0.05 Y + 1 0.05

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

—

9-18

vens vl O QNS 2w

R,]

N e e

*

‘-

2’-‘,}& *g}wx . <~‘;F‘,"‘~:-5f<g- -

’
T r———- -

-

The same algorithm is more clearly programmed
as follows:

t IF X » 1.5 THEN
[X=X - 0,05;
{ ELSE

\ I¥ X < 1.5 THEN
| X=X+ 0.05;
| ELSE

' Y=Y + 1;

9.4 SUMMARY

Section 9 has described conditional statements, labels,

GO TO statements, and the ways in which they affect the

flow of execution in a HAL/S program. Some attempt has

been made to point out both the good and the kad ways

of using these statements. Section 10 goes on to describe
statement groups and how the usage of the constructs described
in Sections 9 and 10 are very often interrelated in well-
designed HAL/S programs.

9-19

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

D AT LA A 6

A

¥

L

e

GE GE T A Al N B SN S B @ S T O en er e o

10, STATEMENT GROUPS

Section 1.3 of the Guide introduced, on an abstract level,
the idea of "statement groups", which could be treated as
if they were simple executable statements, and could be
nested one inside the other. The power of such a facility
can be seen, for examnple, when it is used in conjunction
with the conditional statement: (this is demonstrated later

in Section 10.1).

There is, in fact, a second, equally important reason for
grouping statements in HAL/S: the execution of such groups
can bc controlled in a variety of ways. If no explicit
specification 1s made, the sequence of statements is executed
once only. By explicit specification:

® the seguence may be repetitively executed until some
condition is satisfied;

@ a single executable statement (or nest statement group)
of the group, selectable at execution time, may be
executed,

»

Section 10 explains in detail how statements are grouped,
and how execution control of the groups is specified.

10.1 DELIMITING STATEMENT GROUPS

In HAL/S, groups of statements are said to be "well-bracketed”:
they are delimited explicitly by opening and closing statements
which are themselves considered executable.

10-1
INTERMETRICS INCORPORATED + 701 CONCCRD AVENUE - CAMBRIDGE, MASSACHUSETTS 02i38 - (617) €61-1840

v
I ————
| 1 R *

THE DO STATEMENT

Every statement group is opered with a "DO" statement which
is also used to ~pecify control of execution within the group.
It takes the generic form:

ey e gENE a2

: DO <control>;

H
1. <control> is a construct to be
described. It specifies the manner .
in which the sequence of statements :
is to be executed. ‘

*

2. <control> is optional. If it is .
absent, the sequence of statements
is executed in its natural order*
once only.

3. The DO statement is executable in
that it may be labelled according
to tle Rules of Section 9.

The particular instances of DO statements will be explained
in Section 10.2.

-

Y

* The "natural order" of execution was explained in
Section 3.3.

10-2
n
ITEAUETAINS 10 APC RATFN « 701 CONCORD AVENUL « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

&

Ao 4

-

THE END STATEMENT

Every statement group is closed with an END statement:

|
: END <label>;

l. The END statement is executable
in that it may be labelled according
to the Rules of Section 9.

2. <label> is optional: if present,
the opening DO statement of the group
must be labelled with -“labeil>.

The label specification in an END statement is never
functionally necessary in HAL/S. However, it should be
regarded as good programming practice because it
facilitates cross-checking by the compiler.

uxanmples:

Two instances of statement groups are shown below.
Even though details of executior control have not
yet been explained, the form of the construct should

be clear.
'
| DO WHILE I > 0; | opening DO statement
! I=1I-~1;
; A = 0; } group of statements
¢ 8 I
: END; | closing END statement

PIX: DO POR I = 1,25,16,2;
A =-A, one statement in group

s I I
END FIX; label specification in
END matches label of DO

G g S~

10-3
TYTIT R AARCARATER « 70 COMCC RN AVEN'IF - CAMBRIDGE, MASSACHUSETTS 02138 ¢ (617) 661-1840

The folicwir: exanples show the importance of keing able
to group statements together for use in conjunction with a

conditional

statement.

0 THEN I = 2;
= 'RESET VALUE OF I TO '||I;

cee (D)

It is required to conditionally

execute both assignments:
solution is -

THEN GO TO NOSET;

RESET VALUE OF I TO *'||I;

soe Y]) 4

This solution is error prone and
not in accerdance with structured
programming concepts:

solution is -

a better

IF § = 0 THEN DO;

C = 'RESET VALUE OF I TO '||1;

The whole of the group enclosed
by DO ... END is subject to
conditional execution.

»

Y

t

~

U2 T

2 B IR O OGN) P O SN SN ar S O SR P cw e

10.2 REPETITIVE EXECUTION OF STATEMENT GROUPS

The sequence of statements in a group can be executed
repetitively until some condition is satisfied. 1In
this section, two basic forms of DO -tatement causing
repetitive executinn are described:

® The DO WHILE statement, in which execution is
repeated while a relational or BOOLEAN exprescsion
remains TRUE in value;

® The DO FOR statement, in which the sequence is

executed once for each of a set of assigned values
of a "control variable”.

THE DO WHILE STATEMENT

The form of the DO WHILE statement is:

—_—

i DO WHILE <cond>;

1. <cond> is any relational or
BOOLEAN expression. It is
evalnated prior to each cycle
of exccution of the statement
sequenc2 in the group.

2. The next cycle of execution of
the group proceeds if the value
of <cond- is TRUE.

3. If the value of <cond> is FALSE,
the stopping condition is satis-
fied. Execution proceeds to the
statement following the END state-
ment of the group.

10-8

P

|

¢ e

"._

‘0
a4 147y A g 17N *

-

Examples:

1 I = 9;

: DO WHILE I > O;
! I =1I-2;

¢ END;

Here thc group is executed 5 times, after which
the value of I is -1. 1In flow diagram form,
the sequence of events is:

-— wame QR N

Y
——

It is possible for a group never to be executed: {
i DO WHILE FALSE;
' I1=1-2; ‘2
\ END;
]

{- s g

Wi

e e ——

'10-6
t
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661~18401 ‘

—lBT OO AETRIC S INCUOREORATED * ¢ 0 Uarn . DU VLU W o

& -— .

It is also possible for a group to be executed

.
.

forever:
|
. I = 0;
: DO WHILE TRUE:
' I =1I-2;
. END;
'
!

Normally in this case, the programmer would insert
statements in the group removing this possibility:
]
, I =9;
+ DO WHILE TRUE;
] I=I“2;
! IF I < 0 THEN GO TO ALL_DONE;
| END;
]
]

-
L]
.

There exists a variant of

the DO WHILE statement

called the DO UNTIL state-
ment. Here execution of

the group is assured at least
once, whatever the value of
the controlling expression.
See: (tbd).

10-7

mTraneTRice 1MCNRPNRATEND < 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

T e

THE DO FOR STATEMENT

The most widely used form of the DO FOR statement is:

EDO FOR <var> = <init> TO <final> BY <inc>;
]

1. <var> is an unarrayad INTEGER or SCALAR
data item (it may be subscripted if
required). It is called the “control
variable" of the DO FOR statement.

2, <init>, <final> and <inc> are integer
or scalar expressions:

® <init> is the initial value
assigned to <var>.

® <inc> is the amount by which
<var> is incremented on each
cycle of execution cf the segquence
of statements in the group.

® <final> is the value against which
<var> is tested at the start of
every cycle to determine if the
stopping condition is satsified.,

All three expressions are evaluated
once prior to the first cycle of
execution.

3. The stopping condition is met when
the value of <var> lies outside the
range bounded by <init> and <final>.

4. <inc> may be either positive or
negative. The phrase

BY <inc>

is optional. 1If omitted, the implied
increment is +1.

10-8
ITEAMITRING MICNRPA IATEN « 701 CONCORN AVENUE « CAMBRIDGE. MASSACHIJSETTS 02138 « (817) 661-1840

L SR o e L .

\——_

[l i - .t . 1

o el)

- wmay AR

—— Gt

Examples:

DO FOR I = 1 TO 10;
X =1I;
I
END;

n

Here the group is executed 10 times. I is
initially 1, and increments each time until
10 is reached. At the end of execution of
the group, the value of I is 11, In flow
diagram form, the sequence of events is:

¥
Set
I=1
,/%é\\\
increment I >i0
I by N .
1 ? Yes |
A (
|
|
No
L .
Set
Xp =1
10-9

TTEUITTAMACANCARPARATEN « TNt CONCORN AVENLIF « CAMBRIDGE, MASSACHUSETTS 02138 « (517) 681-1840

L s 1mce

L4

Bt AT

L5 g -

P

‘fg%,_(R

g

I =7,

DO FO
X

END;

+ 5170 I - 3 BY -2;

0w~

I=1
X + I;

This example demonstrates some of the subtleties
of the DO FOR statement. The initial and final
values are precomputed as 12 and 4 respectively.
Then I is reused as the control variable: the
yroup is executed 5 times, and after the last
cycle of execution, I retains the value 2.

.’

Care must be taken if the
control variable is integer
and the range expressions are
scalar: rounding occurs

¥ during assignment of values
ir. such cases.

This DO FOR statement may
possess a WHILE or UNTIL
clause which furnishes a
supplementary stopping con-
dition.

See (tbd).

10-10

1 "TERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184

: s .

L " Sl 2

[

-
L] et o

W3 e e e

I

),}z"

P

R R I ¥

e
s

,
4R U A et

0

. - - -, . - . - v .

The DO FOR statement has a second form which is used if
the values of the control variable do not form a regular
progression:

T
t DO FOR <var> = <exp>, <exp>, ... <exp>;

|

l. <var> is the control variable as before.

2. Each <exp® is an integer or scalar
expression. Values of the <exp)'s are
assigned to <var> in turn prior to the
execution of each cycle, on a left-to-
right hasis.

3. Each <exp> is evaluated immediately prior
to the cycle of execution in which it
will be used.

Exa?ples:

DO FOR I = 17,5,12,4;
X =1;
S I
END;

Here, I takes the successive values 17, 5, 12, and 4.
After the end of the last cycle, the value of I remains
at 4.

-
(o]
]
(=]
NW"

Superficially, this example looks like a different
way of expressing the second example for the first
form of DO FOR s*atement: .

F I=3I+5T01~- 3 BY -2;
X=X+ I;
H

10-11

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE +*CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

L 4l

h 4

However, the successive values of I in the new
form (by Rule 3) are:

12, 15, 16, 15, 12
as opposed to
12, 10, 8, 6, 4

in the o0ld form.

Rounding also occurs if the
control variable is integer
and any of the cantrol expres-
sions are scalar.

As before, the DO FOR statement
may possess a WHILE or UNTIL
clause which furnishes a
supplementary stopping conui-
tion.

See: (tbd).

b g

et | e]

10-12

i

-

rmmsrTMeS INCOTBARATEN « 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

[P

58

R

wg

M e

E s

10,3 SELECTIVE EXECUTION OF STATEMENT GROUPS

One statement of a group may be selected for execution
by means of the DO CASE statement. The form of the
DO CASE statement is:

i DO CASE <exp>;

1. <exp> is an integer or scalar
expression.

2, If its value is k (after rounding
if necessary), then the kth state-
ment of the group is selected for
execution.

3. A run time error results it k < 0
or k is greater than the number of
statements in the group.

The flexibility of a DO CASE statement is understood when
it is realized that the selected statement may be a .
compound statement (i.e. it may itself be a statement
group) .

l
!
!
!
!
|
!
i
1
!
I
1
i
i
i
i
i

Example:
I = 3;
DO CASE I;
X = 4; case 1
X = 3; case 2
DO;
¥ : ;; case 3
END;
X=1; case 4
X = 0; case 5
END;
10-13

‘ INTERMETRICS INCORPORATED + 701 CCNCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 ¢ (617) 661-1840

srpgpa—

-

R

i s . gbp st o

e

Execution results in the third statement being
scheduled for execution, and the following

values being set:

X=7,Y=z3

An ELSE clause may be added

to the DO CASE statement which
is executed instead of an
‘error being signalled, if the
value of the case variable is
outside the legal range for the
statement group.

See: (tbd).

10-14

]
¥

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840?

JURRSRRDA—

kﬁ."r'f‘

[

A

L v s Aty el OEE SUN DN GEE GNE GBS BN W TN T e

NTERMETRICS INTORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02136 + (617) 661-1840

=N

10,4 BRANCHING IN STATEMENT GROUPS
i

Any statement group may be branched out of by executing

a GO TO statement. In those cases where the group is
being respectively executed, execution obviously ceases
before the stopping criterion is satisfied. Because GO TO
statements are viewed unfavorably from the standpoint of
structured programming, HAL/S possesses two statements
expressly for executing contrelled branches in statement

groups.

® The EXIT statement is, in effect, a controlled branch
out of a statement group.

® The REPEAT statement only applies to statement grcups
executed repetitively, and is a controlled branch back
to the beginning of the group.

THE EXIT STATEMENT

The simplest form of the EXIT statement is:

o BXIT:

1. 1Its execution causes an immediate
‘branch out of the innermost state-
ment group in which it is enclosed.

2. Execution is directed to the first
statement following the END of the
group branched out of.

Semaons e et

-y

10-15

"“‘-

Examples.

DO:

.
4
.
L4

=

F 2 3 THEN EXIT;

4;

X + l;<::

Arrow shows branch in execution if 2 = 3

N

I Oe3 ¢

E
X

DO WHILE X > 0;
X=X -1;
IF X > 2 THEN DO;
IF Y = 3 THEN EXIT;
Y=Y+ 1;
END;
END;

- - EBUW e e ces o

’

Arrow shows branch in execution if Y £ 3: execution
branches to end, but not out of DO WHILE group.

There exists a second form of the EXI7 statement to allow branches
out of other than the innermost scatement group:

10-16

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 681-1840

wesEss Wiy

. —

i

(R B e]

|
{
[
]
1
1
1
1
|

i
[

& .

w4

boas |

L L g s e

5 Ul D a5 I N e e ey ekl e e caw A O e

dilbee

| EXIT <label>;
]

1. Its execution causes a branch out
of the enclosing statement group
whose DO statement possesses the
label <label>.

2. Execution is directed to the first
statement after the END of the group
branched out of.

Example:
t ONE: DO WHILE X > 0;
' X=X-1;
! DO FOR I =1 TO 10;
. A =A + X;
'S I I

IF X = I THEN EXIT ONE;

IF X = 0 THEN EXIT:

END;
END;

X = 0;

The first EXIT statement causes a branch out of the
outer group rather than the inner, by virtue of its
label.

10-17

' INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

§

THE REPEAT STATEMENT

The simplest form of the REPEAT statement is:

REPEAT;

1. It must be enclosed in a DO FOR
or DO WHILE group.

2. 1Its execution causes an immediate
branch to the beginning of the
innermost enclosing DO FOR or
DO WHILE group.

3. The next cycle of execution of
the group then starts (unless
of course the stopping condition
is satisified).

Examples:

'
' DO WHILE X > 0;
‘ X=X - 1;

H IF X = 4 THEN DO;
H Y=Y + X;
1 IP Y = 1 THEN REPEAT;
! END;
‘END:

: If Y = 1 then a branch back to the beginning of the
; DO WHYILE is made. Ncte that although the DO WHILE
: is not the innermnst group, it is the innermcst

repetitive group.

10-18

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 66'4840'

S\

e
-

- ="

ot s

L

X = 4; /\

Do WHILE X > 1:{ "\
X=X-l; \4“. §
IF X = 1 THEN REPEAT;
Y = X;

S X

END;

- e -

- Cwe - -

When X £ 2 the REPEAT branch is executed:

a new cycle of execution does not begin
however because the initial test shows that
the stopping condition is satisfied.

As with the EXIT statement, there exists a secord form of
the REPEAT statement allowing brancne~ back to the beginning
of other than the innermost DO WHILE or DO FOR group:

l + REPEAT <label>;
I 1. 1Its execution causes an immediate
i branch to the beginning of the
enclosing DO FOR or DO WHILE
group whose DO statement possesses
l the label <label>.

2. The next cycle of execution of
the group then starts (unless the
stopping condition is satisfied),

10-19

' INTERMETR!'CS iNCORPORATED « 701 CONCORD AVENUE - CAMRRILGE, MASSACHUSETTS 02138 « (617) 661-1840

F'a

—-——

4
Example: ‘ b

ONE: DO FOR I =1 TO 10;‘
J = I; ;
DO WHILE J > O0;

|

|

|

|

I

| X =X J;

Is J J

i IF X = 25 THEN REPEAT; :
Is J §
| IF ¥ = 0 THEN REPEAT ONE; ‘
IS J

! END; i
: END; :
) 2 =0;

The second REPEAT statement restarts the outer DO FOR ,
group rather than the inner DO WHILE by virtue of its label. '

T
| :
-

10-20 '] i
é
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 , '

10.5 SUMMARY

Section 10 has explained how statements may be grouped
together into compound statements, and how such groups
ray be executed repetitively or selectively.

A: this point in the Guide, programs can be constructed
using assignment statements, and controlling execution
through conditional statements and statement groups. It
remains in Part I to complete the description of basic HAL/S
programming tools by discussing functions, procedures, and

{ I/G. Section 11 describes how functions and procedures are
? defined and invoked.

' 10-21

‘ INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

-

—————

11, FUNCTIONS AND PROCEDURES (TBD)
11.1 BLOCK DEFINITIONS (TBD)
11,2 PARAMETER LISTS (TBD)
11.3 PROCEDURE CALLING (TBD)
11.4 FUNCTION INVOCATION (TBD)
11.5 BUILT-IN FUNCTIONS (TBD)

11.6 SUMMARY (TBD)

11-1

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

I
-

I
!
I
!
]
}
|
|
i
I
|
I
|
|
|
|
{

12, INPUT/OUTPUT STATEMENTS (TBD)

12,1 THE READ STATEMENT (TBD)
12,2 THE WRITE STATEMENT (TBD)
12,3 SIMPLE 170 FORMAT CONTROL (TBD)

12,4 SUMMARY (TBD)

12-1

INTFRMFTRICS INCORPORATED + 707 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

PR

Lt

RIS NS 4

13, SUMMARY OF PART I (TBD)

13-1

IMTFRMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

#

MRS bR et e A =

b g
sy,

